LATTICE BOLTZMANN SIMULATIONS OF DROP DEFORMATION AND BREAKUP IN SHEAR FLOWS

2003 ◽  
Vol 17 (01n02) ◽  
pp. 21-26 ◽  
Author(s):  
T. INAMURO ◽  
R. TOMITA ◽  
F. OGINO

A lattice Boltzmann method for multicomponent immiscible fluids is applied to simulations of drop deformation and breakup in shear flows for various capillary numbers and viscosity ratios at three different Revnolds numbers, Re = 0.2, 1, 10. The effect of the Reynolds number on drop deformation and breakup in shear flows is investigated. It is found that the drop is easier to deform and to be ruptured as the Reynolds number increases.

2014 ◽  
Vol 554 ◽  
pp. 665-669
Author(s):  
Leila Jahanshaloo ◽  
Nor Azwadi Che Sidik

The Lattice Boltzmann Method (LBM) is a potent numerical technique based on kinetic theory, which has been effectively employed in various complicated physical, chemical and fluid mechanics problems. In this paper multi-relaxation lattice Boltzmann model (MRT) coupled with a Large Eddy Simulation (LES) and the equation are applied for driven cavity flow at different Reynolds number (1000-10000) and the results are compared with the previous published papers which solve the Navier stokes equation directly. The comparisons between the simulated results show that the lattice Boltzmann method has the capacity to solve the complex flows with reasonable accuracy and reliability. Keywords: Two-dimensional flows, Lattice Boltzmann method, Turbulent flow, MRT, LES.


Author(s):  
Masaaki Tamagawa

This paper describes development of the prediction method of thrombus formation by Computational Fluid Dynamics (CFD) on pipe orifice shear flows. These shear flows are typical models of the flow in the rotary blood pump. In this investigation, the thrombus formation in blood plasma flow is visualized, and modified lattice Boltzmann method are used to predict the backward forwarding step flow, that is simple model of the orifice flow.


Sign in / Sign up

Export Citation Format

Share Document