EFFECTS OF SUBSTITUTIONAL DOPING IN ELECTRONIC TRANSPORT PROPERTIES OF CARBON NANOTUBES

2013 ◽  
Vol 27 (26) ◽  
pp. 1350157 ◽  
Author(s):  
HIROYOSHI TSUYUKI ◽  
TOMOHIRO SHIIBASHI ◽  
SHOICHI SAKAMOTO ◽  
MITSUYOSHI TOMIYA

We have numerically investigated electronic transport properties in single-walled carbon nanotubes (SWCNTs) doped with boron (B) and nitrogen (N) substitutional impurities. Our calculations are performed by the ab initio density functional theory (DFT) and the nonequilibrium Green's function (NEGF) approach. We show that the electronic transmissions are moderated after the doping on both metallic and semiconducting CNTs. In B and N codoping nanotubes, depending on the arrangements of B and N substitutions, electronic and transport properties have been also modified. Calculating from electronic transmissions under bias, I–V characteristics of doped CNTs are demonstrated. In our simulations, we find that the substituting impurities in the semiconducting CNT raise the conductivity regardless of p- or n-type doping, whereas the conductivity of metallic CNTs is reduced by doping.

Author(s):  
G. R. Berdiyorov ◽  
U. Khalilov ◽  
H. Hamoudi ◽  
Erik C. Neyts

AbstractUsing density functional theory in combination with the Green’s functional formalism, we study the effect of surface functionalization on the electronic transport properties of 1D carbon allotrope—carbyne. We found that both hydrogenation and fluorination result in structural changes and semiconducting to metallic transition. Consequently, the current in the functionalization systems increases significantly due to strong delocalization of electronic states along the carbon chain. We also study the electronic transport in partially hydrogenated carbyne and interface structures consisting of pristine and functionalized carbyne. In the latter case, current rectification is obtained in the system with rectification ratio up to 50%. These findings can be useful for developing carbyne-based structures with tunable electronic transport properties.


2019 ◽  
Vol 33 (29) ◽  
pp. 1950347 ◽  
Author(s):  
Xiao-Chong Liang ◽  
Xiao-Jiang Long ◽  
Lin Zhang ◽  
Jun Zhu

The structural and electronic transport properties of [Formula: see text] clusters are studied based on density functional theory (DFT). Their most stable structures are proved to be planar by the particle swarm optimization (PSO) algorithm, and have decreasing binding energies with the increasing number of Ga atom in clusters. The electronic transport properties of these clusters connected with two Al(1 0 0) electrodes are calculated by combining nonequilibrium Green’s-function (NEGF) with DFT. Most of them have an equilibrium conductance of above [Formula: see text], except for [Formula: see text]. Negative differential resistance (NDR) phenomenon of different level is observed in their I–V curves in bias ranges of from [Formula: see text] to [Formula: see text] V and from 0.7 to 1.1 V.


Micromachines ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 26
Author(s):  
Baorui Huang ◽  
Fuchun Zhang ◽  
Yanning Yang ◽  
Zhiyong Zhang

The two-probe device of nanorod-coupled gold electrodes is constructed based on the triangular zinc oxide (ZnO) nanorod. The length-dependent electronic transport properties of the ZnO nanorod was studied by density functional theory (DFT) with the non-equilibrium Green’s function (NEGF). Our results show that the current of devices decreases with increasing length of the ZnO nanorod at the same bias voltage. Metal-like behavior for the short nanorod was observed under small bias voltage due to the interface state between gold and the ZnO nanorod. However, the influence of the interface on the device was negligible under the condition that the length of the ZnO nanorod increases. Moreover, the rectification behavior was observed for the longer ZnO nanorod, which was analyzed from the transmission spectra and molecular-projected self-consistent Hamiltonian (MPSH) states. Our results indicate that the ZnO nanorod would have potential applications in electronic-integrated devices.


2011 ◽  
Vol 506 (4-6) ◽  
pp. 233-238 ◽  
Author(s):  
Vivian M. de Menezes ◽  
Alexandre R. Rocha ◽  
Ivana Zanella ◽  
Ronaldo Mota ◽  
Adalberto Fazzio ◽  
...  

2011 ◽  
Vol 110-116 ◽  
pp. 5495-5499
Author(s):  
Jiu Xu Song ◽  
Hong Xia Liu

The electronic transport properties of an (8, 0) SiC nanotube (SiCNT) with antisite defect are investigated with the method combined non-equilibrium Green’s function with density functional theory, in which the defect is formed with a carbon atom being substituted by a silicon atom. In transmission spectrum of the nanotube, a transmission valley about 1.68 eV near the Fermi energy is discovered, which indicates that the nanotube is a wide band-gap semiconductor. In its current-voltage characteristic, turn-on voltages of ±1.0 V are found under positive and negative bias. This originates from more orbital participating in its electronic transport properties caused by the bias. These results are meaningful to investigations on working mechanisms of SiCNT electronic devices.


2018 ◽  
Vol 32 (04) ◽  
pp. 1850036 ◽  
Author(s):  
Aiyun Yang ◽  
Caijuan Xia ◽  
Boqun Zhang ◽  
Jun Wang ◽  
Yaoheng Su ◽  
...  

By applying first-principles method based on density functional theory combined with nonequilibrium Green’s function, we investigate the effect of torsion angle on the electronic transport properties in dipyrimidinyl–diphenyl co-oligomer molecular device with tailoring graphene nanoribbon electrodes. The results show that the torsion angle plays an important role on the electronic transport properties of the molecular device. When the torsion angle rotates from 0[Formula: see text] to 90[Formula: see text], the molecular devices exhibit very different current–voltage characteristics which can realize the on and off states of the molecular switch.


2016 ◽  
Vol 18 (39) ◽  
pp. 27468-27475 ◽  
Author(s):  
Yi Zhou ◽  
Jichen Dong ◽  
Hui Li

Using first-principles calculations based on nonequilibrium Green's function together with density functional theory, we investigated the electronic transport properties of some devices consisting of armchair and zigzag MoS2NRs/WS2NRs in-plane heterostructures.


Sign in / Sign up

Export Citation Format

Share Document