New statistical lattice model with double honeycomb symmetry

2014 ◽  
Vol 28 (15) ◽  
pp. 1450086 ◽  
Author(s):  
S. Naji ◽  
A. Belhaj ◽  
H. Labrim ◽  
M. Bhihi ◽  
A. Benyoussef ◽  
...  

Inspired from the connection between Lie symmetries and two-dimensional materials, we propose a new statistical lattice model based on a double hexagonal structure appearing in the G2 symmetry. We first construct an Ising-1/2 model, with spin values σ = ±1, exhibiting such a symmetry. The corresponding ground state shows the ferromagnetic, the antiferromagnetic, the partial ferrimagnetic and the topological ferrimagnetic phases depending on the exchange couplings. Then, we examine the phase diagrams and the magnetization using the mean field approximation (MFA). Among others, it has been suggested that the present model could be localized between systems involving the triangular and the single hexagonal lattice geometries.

1995 ◽  
Vol 09 (24) ◽  
pp. 1623-1629 ◽  
Author(s):  
XIN XU ◽  
YUN SONG ◽  
SHIPING FENG

The ground-state kinetic energy of the t-J model is studied within the mean field approximation by using the fermion-spin transformation, the results show that the mean field ground-state kinetic energy is close to the numerical result at under dopings, and roughly consistent with the numerical result at optimal dopings. It is also shown that the frustration term J′ is favourable to diminish the range of the phase seperation in the t-J model.


2009 ◽  
Vol 6 (4) ◽  
pp. 784-789
Author(s):  
Baghdad Science Journal

The mixed-spin ferrimagnetic Ising system consists of two-dimensional sublattices A and B with spin values and respectively .By used the mean-field approximation MFA of Ising model to find magnetism( ).In order to determined the best stabile magnetism , Gibbs free energy employ a variational method based on the Bogoliubov inequality .The ground-state (Phase diagram) structure of our system can easily be determined at , we find six phases with different spins values depend on the effect of a single-ion anisotropies .these lead to determined the second , first orders transition ,and the tricritical points as well as the compensation phenomenon .


2021 ◽  
Vol 7 (5) ◽  
pp. 69
Author(s):  
Catherine Cazelles ◽  
Jorge Linares ◽  
Mamadou Ndiaye ◽  
Pierre-Richard Dahoo ◽  
Kamel Boukheddaden

The properties of spin crossover (SCO) nanoparticles were studied for five 2D hexagonal lattice structures of increasing sizes embedded in a matrix, thus affecting the thermal properties of the SCO region. These effects were modeled using the Ising-like model in the framework of local mean field approximation (LMFA). The systematic combined effect of the different types of couplings, consisting of (i) bulk short- and long-range interactions and (ii) edge and corner interactions at the surface mediated by the matrix environment, were investigated by using parameter values typical of SCO complexes. Gradual two and three hysteretic transition curves from the LS to HS states were obtained. The results were interpreted in terms of the competition between the structure-dependent order and disorder temperatures (TO.D.) of internal coupling origin and the ligand field-dependent equilibrium temperatures (Teq) of external origin.


Sign in / Sign up

Export Citation Format

Share Document