scholarly journals Mean-field Solution of the mixed spin-1 and spin-5/2Ising system with different single-ion anisotropies

2009 ◽  
Vol 6 (4) ◽  
pp. 784-789
Author(s):  
Baghdad Science Journal

The mixed-spin ferrimagnetic Ising system consists of two-dimensional sublattices A and B with spin values and respectively .By used the mean-field approximation MFA of Ising model to find magnetism( ).In order to determined the best stabile magnetism , Gibbs free energy employ a variational method based on the Bogoliubov inequality .The ground-state (Phase diagram) structure of our system can easily be determined at , we find six phases with different spins values depend on the effect of a single-ion anisotropies .these lead to determined the second , first orders transition ,and the tricritical points as well as the compensation phenomenon .

Author(s):  
Hadey K. Mohamad

Using the Mean-field theory based on Bogoliubov inequality for the free energy, a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising model with different anisotropies is investigated. The free energy of a mixed spin Ising ferrimagnetic system from MF approximation of the Hamiltonian is calculated. By minimizing the free energy, we obtain the equilibrium magnetizations and compensation points. In particular, we investigate the effect of a single-ion anisotropy on the magnetic properties including the compensation phenomenon, in order to clarify the characteristic behaviours in a series of molecular-based magnets . The phase diagram of the system is also discussed in the anisotropy dependence of transition temperature. Our results of this model predict the existence of many (two or three) compensation points in the ordered system on a simple cubic lattice.


2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Hadey K. Mohamad

The magnetic properties of a ferrimagnetic mixed spin-3/2 and spin-5/2 Ising model with different anisotropies are investigated by using the mean-field approximation (MFA). In particular, the effect of magnetic anisotropies on the compensation phenomenon, acting on A-atoms and B-ones for the mixed-spin model, has been considered in a zero field. The free energy of a mixed-spin Ising ferrimagnetic system from MFA of the Hamiltonian is calculated. By minimizing the free energy, we obtain the equilibrium magnetizations and the compensation points. The phase diagram of the system in the anisotropy dependence of transition temperature has been discussed as well. Our results of this model predict the existence of many (two or three) compensation points in the ordered system on a simple cubic lattice.


2014 ◽  
Vol 215 ◽  
pp. 55-60 ◽  
Author(s):  
Sergey N. Martynov

A model for the description of two-subsystem Heisenberg ferrimagnet with frustrated intersubsystem exchange and competition between exchange interactions in a subsystem is proposed. The conditions of the existence of noncollinear Yafet-Kittel state and partially ordered magnetic structure are investigated. The phase diagram of competition parameter vs temperature is obtained in the mean field approximation. The peculiarities of the succesive magnetic phase transitions are considered.


1979 ◽  
Vol 57 (10) ◽  
pp. 1686-1698 ◽  
Author(s):  
G. Gumbs ◽  
A. Griffin

Using the Ginzburg–Landau–Wilson (GLW) Hamiltonian, we obtain, with the mean-field approximation, explicit expressions for the spin–spin correlation function χ(z,z′) of a film of thickness L above the phase transition temperature Tc and the spontaneous magnetization [Formula: see text] below Tc. The boundaries are treated using a temperature-independent extrapolation length Λ. From our results, we verify explicitly that for finite L, the critical indices associated with the spin–spin correlation functions and the surface magnetization are identical with those for the analogous two-dimensional system, for both the ordinary (Λ > 0) and surface (Λ < 0) transitions. Our model results nicely exhibit the fact that as long as L is finite, when the temperature T approaches sufficiently close to Tc, there is a crossover from behaviour characteristic of a single surface to two-dimensional behaviour. Within the one-loop, Hartree self-consistent field approximation, we study the effects of mode–mode coupling on the surface layer susceptibility in films of varying thicknesses. The singular behaviour obtained in the mean-field approximation is found to be completely removed in systems of finite thickness, the susceptibilities only exhibiting a finite cusp at the transition.


1994 ◽  
Vol 08 (28) ◽  
pp. 3963-3986
Author(s):  
EVGENIA J. BLAGOEVA

A generalized Landau free energy for a complex order parameter expanded up to sixth-order is investigated using group theoretical arguments and the mean-field approximation. Results for the phase transitions that occur are presented. The phase diagram for all allowed values of the expansion coefficients is constructed with an emphasis placed on the influence of the anisotropy in the order parameter space. The results can be used in discussions of unconventional superconductors and modulated structural and magnetic orderings.


2021 ◽  
Author(s):  
◽  
Philip Lakaschus

This thesis explores the phase diagrams of the Nambu--Jona-Lasinio (NJL) and quark-meson (QM) model in the mean-field approximation and beyond. The focus lies in the investigation of the interplay between inhomogeneous chiral condensates and two-flavor color superconductivity. In the first part of this thesis, we study the NJL model with 2SC diquarks in the mean-field approximation and determine the dispersion relations for quasiparticle excitations for generic spatial modulations of the chiral condensate in the presence of a homogeneous 2SC-diquark condensate, provided that the dispersion relations in the absence of color superconductivity are known. We then compare two different Ansätze for the chiral order parameter, the chiral density wave (CDW) and the real-kink crystal (RKC). For both Ansätze we find for specific diquark couplings a so-called coexistence phase where both the inhomogeneous chiral condensate and the diquark condensate coexist. Increasing the diquark coupling disfavors the coexistence phase in favor of a pure diquark phase. On the other hand, decreasing the diquark coupling favors the inhomogeneous phase over the coexistence phase. In the second part of this thesis the functional renormalization group is employed to study the phase diagram of the quark-meson-diquark model. We observe that the region of the phase diagram found in previous studies, where the entropy density takes on unphysical negative values, vanishes when including diquark degrees of freedom. Furthermore, we perform a stability analysis of the homogeneous phase and compare the results with those of previous studies. We find that an increasing diquark coupling leads to a smaller region of instability as the 2SC phase extends to a smaller chemical potential. We also find a region where simultaneously an instability occurs and a non-vanishing diquark condensate forms, which is an indication of the existence of a coexistence phase in accordance with the results of the first part of this work.


1995 ◽  
Vol 09 (24) ◽  
pp. 1623-1629 ◽  
Author(s):  
XIN XU ◽  
YUN SONG ◽  
SHIPING FENG

The ground-state kinetic energy of the t-J model is studied within the mean field approximation by using the fermion-spin transformation, the results show that the mean field ground-state kinetic energy is close to the numerical result at under dopings, and roughly consistent with the numerical result at optimal dopings. It is also shown that the frustration term J′ is favourable to diminish the range of the phase seperation in the t-J model.


Sign in / Sign up

Export Citation Format

Share Document