Study on the existence of the transportation particle tracking model in the interactive medium

Author(s):  
Mohamed Abd Allah El-Hadidy ◽  
Alaa A. Alzulaibani

This paper assumes that the particle jumps randomly (Guassian jumps) from one point to another along one of the imaginary lines inside the interactive medium. Since this study was done in the space, we consider that the position of the particle at any time [Formula: see text] has a multivariate distribution. The random waiting time of the particle for each Gaussian jump depends on its length. An identical set of programed nanosensors (with unit speed) were used to track this particle. Each line has a sensor that starts the tracking process from the origin. The existence of the necessary conditions which give the optimal search plan and the minimum expected value of the particle detection has been proven. This study is supported by a numerical example.

DYNA ◽  
2019 ◽  
Vol 86 (211) ◽  
pp. 241-248
Author(s):  
Francisco Fernando Garcia Renteria ◽  
Mariela Patricia Gonzalez Chirino

In order to study the effects of dredging on the residence time of the water in Buenaventura Bay, a 2D finite elements hydrodynamic model was coupled with a particle tracking model. After calibrating and validating the hydrodynamic model, two scenarios that represented the bathymetric changes generated by the dredging process were simulated. The results of the comparison of the simulated scenarios, showed an important reduction in the velocities fields that allow an increase of the residence time up to 12 days in some areas of the bay. In the scenario without dredging, that is, with original bathymetry, residence times of up to 89 days were found.


2020 ◽  
Author(s):  
Arianna Cauteruccio ◽  
Elia Brambilla ◽  
Mattia Stagnaro ◽  
Luca Giovanni Lanza ◽  
Daniele Rocchi

2012 ◽  
Vol 68 (2) ◽  
pp. I_1111-I_1115
Author(s):  
Koichi SUGIMATSU ◽  
Hiroshi YAGI ◽  
Akiyoshi NAKAYAMA ◽  
Hiromu ZENITANI ◽  
Yasushi ITO

Author(s):  
Ye Ai ◽  
Seungkyung Park ◽  
Junjie Zhu ◽  
Xiangchun Xuan ◽  
Ali Beskok ◽  
...  

Direct current dielectrophoretic (DC-DEP) effects on the electrophoretic motion of charged polystyrene particles through an L-shaped microchannel were experimentally and numerically studied. In addition to the electrostatic and hydrodynamic forces, particles experience a negative DC-DEP force arising from the interaction between the dielectric particle and the induced spatially non-uniform electric field occurring around the corner of the L-shape microchannel. The latter force causes a cross-stream DEP motion so that the particle trajectory is shifted towards the outer corner of the turn. A two-dimensional (2D) Lagrangian particle tracking model taking into account the induced DC-DEP effect was used to predict the particle trajectory shift through the L-shaped channel, which achieves quantitative agreement with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document