spawning grounds
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 75)

H-INDEX

35
(FIVE YEARS 3)

2021 ◽  
Vol 8 ◽  
Author(s):  
Frode B. Vikebø ◽  
Ole Jacob Broch ◽  
Clarissa Akemi Kajiya Endo ◽  
Håvard G. Frøysa ◽  
JoLynn Carroll ◽  
...  

By combining an ocean model, a nutrient-phytoplankton-zooplankton-detritus-model and an individual-based model for early life stages of Northeast Arctic cod we systematically investigate food limitations and growth performance for individual cod larvae drifting along the Norwegian coast from spawning grounds toward nursery areas in the Barents Sea. We hypothesize that there is food shortage for larvae spawned early and late in the 2-monthlong spawning period, and to a larger degree to the north and south of the main spawning grounds in the Lofoten. Model results for three contrasting years (1995, 2001, and 2002) show that spawning early in the season at spawning grounds in the Lofoten and farther north is favorable for larval growth close to their size- and temperature-dependent potential. Still, both early and late spawned larvae experience slower growth than individuals originating closer to the time of peak spawning late March/early April. The reasons are low temperatures and shortage in suitable prey, respectively, and this occurs more frequent in areas of strong currents about 1–2 months post hatching. In particular, late spawned larvae grow relatively slow despite higher temperatures later in the season because they are outgrown by their preferred prey.


2021 ◽  
Author(s):  
Angus Atkinson ◽  
Simeon L. Hill ◽  
Christian S. Reiss ◽  
Evgeny A. Pakhomov ◽  
Gregory Beaugrand ◽  
...  

2021 ◽  
Author(s):  
◽  
Vincent Wood

<p>Inanga (Galaxias maculatus) are the major component of New Zealand’s whitebait fisheries. Monitoring of freshwater-based adult populations in both North and South Island river systems suggests a general decline in numbers of fish, and specific streams and watersheds are of particular concern for some regional councils. Given this context, improved information about the environmental conditions that influence inanga’s reproductive output may help to inform appropriate management actions and improve the long term viability of these populations. The breeding biology of adult inanga has been the focus of considerable research effort, with restoration of spawning grounds further extending our knowledge of spatio-temporal patterns of spawning. However, the behaviour patterns and fates of adult fish outside of the spawning locations and seasons are poorly known, as are the factors that may influence the survival and development of pre-spawning stages of inanga. Variation in body shape and size influences multiple performance and fitness attributes, and has major implications for reproduction. My thesis aims to quantify relationships between morphology and reproductive output for adult inanga, and to investigate environmental factors that may influence morphological development.  I collected inanga at two discrete stages of adult development: (i) pre-spawning stage adults at upstream habitats and (ii) spawning-stage adults collected at known breeding grounds during the spawning season. I photographed inanga in the field using a purpose-built aquarium and measured a set of morphological characteristics related to reproductive output and swimming ability. Specifically, I measured standard length, head depth, body depth and caudal peduncle depth. A subsample of adult inanga collected during the spawning season were returned to the laboratory and euthanized to measure aspects of their reproductive biology. Specifically, I measured reproductive output using gonad weight, I estimated maturity using the gonadosomatic index (GSI: weight of the gonad relative to total body weight), and I estimated energetic reserves using the hepatosomatic index (HSI: weight of the liver relative to total body weight).   Pre-spawning stage inanga in the Waiwhetu Stream displayed deeper bodies than fish in either the Hutt or Wainuiomata Rivers, potentially due to higher concentrations of food. Inanga in the Wainuiomata River displayed slightly larger sizes prior to the spawning season and substantially larger bodies during the spawning season. Although the Waiwhetu Stream may have had a greater supply of food, high densities of fish in smaller stream systems could constrain adult growth. Spawning-stage adults collected from the Waiwhetu Stream had greater reproductive output than fish collected from the Hutt River, with a peak in spawning activity during May. Fish collected from spawning grounds in the Hutt River had lower reproductive output and two peaks in spawning activity during March and May. Inanga in the Hutt River also displayed greater within-month variation in the maturity of fish.   My results suggest that spawning grounds in larger, more complex river systems (e.g., the Hutt River) may be supplied by inanga from a diverse range of main stem habitats and smaller tributaries further inland. Smaller systems (e.g., the Waiwhetu Stream) may be comprised of a more homogeneous population of inanga, and reproductive output of the system as a whole may be greater, but concentrated over a shorter time period. I hypothesise that the reproductive output from larger river systems may be more resilient to disturbance events (e.g., stock trampling of spawning grounds) because these systems (by virtue of their greater diversity of habitats and phenotypes of fish) may enable multiple opportunities for spawning. I suggest that larger rivers, such as the Hutt River, may be of disproportionate importance (independent of their total reproductive output) for the replenishment of inanga stocks.</p>


2021 ◽  
Author(s):  
◽  
Vincent Wood

<p>Inanga (Galaxias maculatus) are the major component of New Zealand’s whitebait fisheries. Monitoring of freshwater-based adult populations in both North and South Island river systems suggests a general decline in numbers of fish, and specific streams and watersheds are of particular concern for some regional councils. Given this context, improved information about the environmental conditions that influence inanga’s reproductive output may help to inform appropriate management actions and improve the long term viability of these populations. The breeding biology of adult inanga has been the focus of considerable research effort, with restoration of spawning grounds further extending our knowledge of spatio-temporal patterns of spawning. However, the behaviour patterns and fates of adult fish outside of the spawning locations and seasons are poorly known, as are the factors that may influence the survival and development of pre-spawning stages of inanga. Variation in body shape and size influences multiple performance and fitness attributes, and has major implications for reproduction. My thesis aims to quantify relationships between morphology and reproductive output for adult inanga, and to investigate environmental factors that may influence morphological development.  I collected inanga at two discrete stages of adult development: (i) pre-spawning stage adults at upstream habitats and (ii) spawning-stage adults collected at known breeding grounds during the spawning season. I photographed inanga in the field using a purpose-built aquarium and measured a set of morphological characteristics related to reproductive output and swimming ability. Specifically, I measured standard length, head depth, body depth and caudal peduncle depth. A subsample of adult inanga collected during the spawning season were returned to the laboratory and euthanized to measure aspects of their reproductive biology. Specifically, I measured reproductive output using gonad weight, I estimated maturity using the gonadosomatic index (GSI: weight of the gonad relative to total body weight), and I estimated energetic reserves using the hepatosomatic index (HSI: weight of the liver relative to total body weight).   Pre-spawning stage inanga in the Waiwhetu Stream displayed deeper bodies than fish in either the Hutt or Wainuiomata Rivers, potentially due to higher concentrations of food. Inanga in the Wainuiomata River displayed slightly larger sizes prior to the spawning season and substantially larger bodies during the spawning season. Although the Waiwhetu Stream may have had a greater supply of food, high densities of fish in smaller stream systems could constrain adult growth. Spawning-stage adults collected from the Waiwhetu Stream had greater reproductive output than fish collected from the Hutt River, with a peak in spawning activity during May. Fish collected from spawning grounds in the Hutt River had lower reproductive output and two peaks in spawning activity during March and May. Inanga in the Hutt River also displayed greater within-month variation in the maturity of fish.   My results suggest that spawning grounds in larger, more complex river systems (e.g., the Hutt River) may be supplied by inanga from a diverse range of main stem habitats and smaller tributaries further inland. Smaller systems (e.g., the Waiwhetu Stream) may be comprised of a more homogeneous population of inanga, and reproductive output of the system as a whole may be greater, but concentrated over a shorter time period. I hypothesise that the reproductive output from larger river systems may be more resilient to disturbance events (e.g., stock trampling of spawning grounds) because these systems (by virtue of their greater diversity of habitats and phenotypes of fish) may enable multiple opportunities for spawning. I suggest that larger rivers, such as the Hutt River, may be of disproportionate importance (independent of their total reproductive output) for the replenishment of inanga stocks.</p>


2021 ◽  
Vol 201 (3) ◽  
pp. 662-668
Author(s):  
V. V. Pospekhov

Parasites of spawning pacific herring (Clupea pallasii Valenciennes in Cuvier et Valenciennes, 1947) from the Taui population are explored on the samples caught on two spawning grounds located in the Ola lagoon and Amakhton Bay (Tauiskaya Guba Bay, Okhotsk Sea), and 17 species of helminthes are found, including 6 trematodes, 5 cestodes, 4 nematodes, and 2 acanthocephalans. Some differences in species composition of helminthes and their infestation were found between these estuarine and marine spawning grounds. In the Ola lagoon, 16 species of helminthes were identified, including 5 species of cestodes, whereas only 13 species of helminthes, including 3 species of cestodes, were found in the Amakhton Bay. The Taui population of herring is distinguished from the Okhotsk and Gizhiga-Kamchatka populations by presence of nematodes Hysterothylacium aduncum, l, and Ascorophis pacificus with rather high rates of invasion (occurence = 52.9 %; mean abundance = 4.16) and trematode Bucephaloides spp. On the other hand, the herring from the Taui population has common dangerous parasites with other populations in the Okhotsk Sea, as trematode Brachyphallus crenatus and nematode Anisakis spp. (larvae), with high degree of infestation.


Author(s):  
Sven-Erik Gabrielsen ◽  
Robert J. Lennox ◽  
Tore Wiers ◽  
Bjørn T. Barlaup

AbstractSea-run brown trout (Salmo trutta) have a highly phenotypically plastic life history that allows them to be effective colonizers and competitors in freshwater. This paper documents a previously unknown spawning behaviour in a brackish, tidally influenced estuary 14 km from the mouth of the Vosso River, a major Atlantic salmon- and sea-run brown trout–producing river in western Norway. Putative spawning gravel was observed, and sea-run brown trout deposited eggs that hatched in April. Survival of recruits was high (> 95%) in the tidal spawning gravel. These areas are strongly tidally influenced with a peak of 23.17 psu recorded at the lowest spawning ground. The observation of spawning so far from the river mouth may be unique in such a system with a long estuary but provides important insight into the biology of sea trout. Invasion of pink salmon, also known to spawn in estuaries, may negatively affect the competitive balance of sea trout with other salmonids in rivers where sea trout populations rely on recruitment from these relatively extreme spawning areas. Restoration of estuaries that have been modified by dredging or channelization may be important to ensure quality and heterogenous habitat for sea trout spawning given that haline spawning grounds could contribute to population resilience.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Josh Murauskas ◽  
Kim Hyatt ◽  
Jeff Fryer ◽  
Elliot Koontz ◽  
Skyeler Folks ◽  
...  

Abstract Background Okanagan River Sockeye Salmon Oncorhynchus nerka (Okanagan Sockeye) are one of two remaining self-sustaining Sockeye Salmon populations in the Columbia River Basin. We used detection histories of smolts implanted with passive integrated transponder (PIT) tags between 2012 and 2019 to estimate survival and behavioral metrics during reintroduction efforts and changing environmental conditions over the monitoring period. Results Smolts migrating to McNary Dam, whose route includes 130 km of the Okanagan River and 388 km of the Columbia River, generally had high survival (mean of 87.0% per 100 km) and fast migration speeds (up to 50 km/day) relative to other salmonids in the region. Smolt-to-adult returns (SARs) ranged from 0.4 to 6.1% and were greater for fish originating from Skaha Lake compared to cohorts tagged in Osoyoos Lake. Most adults returned after 2 years in the ocean (69%), followed by jacks (27%), and adults that spent 3 years at sea (4%), though Skaha Lake adults had a significantly younger age structure than cohorts from Osoyoos Lake. Survival of adults from Bonneville Dam (rkm 235) upstream to Wells Dam (rkm 830) was generally high (80–92%), and migration speed decreased in upstream reaches. Survival from Wells Dam to the Okanagan River was only estimable in 2018, where 64% of adults survived to the spawning grounds. The upstream migration of adult Okanagan Sockeye was significantly compromised during the drought of 2015 when less than 5% of Okanagan Sockeye that returned to the Columbia River reached spawning grounds. Conclusions Our results indicate that Okanagan Sockeye have exceptional survival and migratory ability relative to other salmonids, though poor ocean conditions combined with warming water temperatures in freshwater habitats in recent years have the potential to devastate the population. The success of reintroduction efforts to increase spatial structure and diversity of Okanagan Sockeye is, therefore, critical to maintaining the population in years to come.


2021 ◽  
Vol 241 ◽  
pp. 106004
Author(s):  
Vladimir Laptikhovsky ◽  
Gavan Cooke ◽  
Christopher Barrett ◽  
Sophie Lozach ◽  
Eleanor MacLeod ◽  
...  

2021 ◽  
Author(s):  
Olga Cazantseva ◽  
◽  
Roman Corobov ◽  
Ilya Trombitsky ◽  
Ghenadii Sirodoev ◽  
...  

There are presented results of the economic valuation of the habitat service and biodiversity losses caused by the Dniester hydropower complex functioning. Habitat services were evaluated for two bird species (glossy ibis, Plegadis falcinellus, and yellow heron, Ardeola ralloides) and fish spawning grounds. The evaluation of biodiversity services was carried out for the Ramsar sites “Lower Dniester” and “Unguri - Holosnita”. The current cost of discussed losses in the Moldavian part of the Dniester basin is about USD 6.7-7.1 million.


Sign in / Sign up

Export Citation Format

Share Document