HIGH-ORDER DISCONTINUOUS GALERKIN SOLUTION OF LOW-RE VISCOUS FLOWS

2009 ◽  
Vol 23 (03) ◽  
pp. 309-312
Author(s):  
HONGQIANG LU

In this paper, the BR2 high-order Discontinuous Galerkin (DG) method is used to discretize the 2D Navier-Stokes (N-S) equations. The nonlinear discrete system is solved using a Newton method. Both preconditioned GMRES methods and block Gauss-Seidel method can be used to solve the resulting sparse linear system at each nonlinear step in low-order cases. In order to save memory and accelerate the convergence in high-order cases, a linear p-multigrid is developed based on the Taylor basis instead of the GMRES method and the block Gauss-Seidel method. Numerical results indicate that highly accurate solutions can be obtained on very coarse grids when using high order schemes and the linear p-multigrid works well when the implicit backward Euler method is employed to improve the robustness.

2013 ◽  
Vol 135 (7) ◽  
Author(s):  
A. Ghidoni ◽  
A. Colombo ◽  
S. Rebay ◽  
F. Bassi

In the last decade, discontinuous Galerkin (DG) methods have been the subject of extensive research efforts because of their excellent performance in the high-order accurate discretization of advection-diffusion problems on general unstructured grids, and are nowadays finding use in several different applications. In this paper, the potential offered by a high-order accurate DG space discretization method with implicit time integration for the solution of the Reynolds-averaged Navier–Stokes equations coupled with the k-ω turbulence model is investigated in the numerical simulation of the turbulent flow through the well-known T106A turbine cascade. The numerical results demonstrate that, by exploiting high order accurate DG schemes, it is possible to compute accurate simulations of this flow on very coarse grids, with both the high-Reynolds and low-Reynolds number versions of the k-ω turbulence model.


Sign in / Sign up

Export Citation Format

Share Document