Breathers, rogue waves and their dynamics in a (2+1)-dimensional nonlinear Schrödinger equation

2020 ◽  
Vol 34 (23) ◽  
pp. 2050234
Author(s):  
Yong Chen ◽  
Xiu-Bin Wang ◽  
Bo Han

Under investigation in this paper is a (2[Formula: see text]+[Formula: see text]1)-dimensional nonlinear Schrödinger equation, which is a generalization of the standard nonlinear Schrödinger equation. By means of the modified Darboux transformation, the hierarchies of rational solutions and breather solutions are generated from the plane wave solution. Furthermore, the main characteristics of the nonlinear waves including the Akhmediev breathers, Kuznetsov–Ma solitons, and their combined structures are graphically discussed. Our results would be of much importance in enriching and explaining rogue wave phenomena in nonlinear wave fields.

Author(s):  
Ni Song ◽  
Wei Zhang ◽  
Sha. Zhou ◽  
Qian Wang

The similarity transformation and direct ansatz are applied to obtain rogue wave solutions of nonlinear Schrödinger equation with varying coefficients. These obtained solutions can be used to describe the possible formation mechanisms for optical rogue wave phenomenon in optical fibres. Moreover their dynamical behaviors are exhibited for chosen different functions. This will further excite the possibility of relative researchers and potential applications of rogue waves in other related fields.


2015 ◽  
Vol 70 (5) ◽  
pp. 365-374 ◽  
Author(s):  
Qi-Min Wang ◽  
Yi-Tian Gao ◽  
Chuan-Qi Su ◽  
Yu-Jia Shen ◽  
Yu-Jie Feng ◽  
...  

AbstractIn this article, a fifth-order dispersive nonlinear Schrödinger equation is investigated, which describes the propagation of ultrashort optical pulses, up to the attosecond duration, in an optical fibre. Rogue wave solutions are derived by virtue of the generalised Darboux transformation. Rogue wave structures and interaction are discussed through (i) the analyses on the higher-order rogue waves, the cubic, quartic, quintic, group-velocity, and phase-parameter effects; (ii) a higher-order rogue wave consisting of the first-order rogue waves via the interaction; (iii) characteristics of the rogue waves which are summarised, including the maximum/minimum values of the rogue waves and the number of the first-order rogue waves for composing the higher-order rogue wave; and (iv) spatial-temporal patterns which are illustrated and compared with those of the ‘self-focusing’ nonlinear Schrödinger equation. We find that the quintic terms increase the time of appearance for the first-order rogue waves which form the higher-order rogue wave, and that the quintic terms affect the interaction among the first-order rogue waves, which elongates the distance of appearance for the higher-order rogue wave.


2019 ◽  
Vol 33 (08) ◽  
pp. 1950090
Author(s):  
Xiao-Yu Wu ◽  
Bo Tian ◽  
Zhong Du ◽  
Xia-Xia Du

Lattices are used in such fields as electricity, optics and magnetism. Under investigation in this paper is an inhomogeneous discrete nonlinear Schrödinger equation, which models the wave propagation in a lattice. Employing the Kadomtsev–Petviashvili (KP) hierarchy reduction, we obtain the rogue-wave solutions, and see that the rogue waves are affected by the coefficient of the on-site external potential. We see (1) the first-order rogue wave with one peak and two hollows; (2) the second-order rogue waves, each of which is with one peak or three humps; (3) the third-order rogue waves, each of which is with one peak or six humps, and those humps exhibit the triangular pattern, anti-triangular pattern and circular pattern. When the coefficient of the on-site external potential is a constant, the rogue waves periodically appear. When the coefficient of the on-site external potential monotonously changes, oscillations emerge on the constant background.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 57 ◽  
Author(s):  
Antonio Degasperis ◽  
Sara Lombardo ◽  
Matteo Sommacal

The formation of rogue oceanic waves may be the result of different causes. Various factors (winds, currents, dispersive focussing, depth, nonlinear focussing and instability) make this subject intriguing, and yet its understanding is quite relevant to practical issues. Here, we deal only with the nonlinear character of this dynamics, which has been recognised as the main ingredient to rogue wave formation. In this perspective, the formation of rogue waves requires a non-vanishing and unstable background such as a nonlinear regular wave train with attractive self-interaction. The simplest, best known model of such dynamics is the universal nonlinear Schrödinger equation. This has proven to serve as a good approximation in various contexts and over a broad range of experimental settings. This model aims to give the slow evolution of the envelope of one monochromatic wave due to nonlinearity. Here, we naturally consider the same problem for the envelopes of two weakly resonant monochromatic waves. As for the nonlinear Schrödinger equation, which is integrable, we adopt an integrable model to describe the interaction of two waves. This is the system of two coupled nonlinear Schrödinger equations (Manakov model) with self- and cross-interactions that may be both defocussing and focussing. We first discuss the linear stability properties of the background by computing the spectrum for all values of the parameters such as coupling constants and amplitudes. In particular, we relate the instability bands to properties of the spectrum and compute the gain function (or growth rate). We also relate to the stability spectrum the value of the spectral variable, which corresponds to a rogue wave solution. In contrast with the nonlinear Schrödinger equation, different types of single rogue wave exist that correspond to different values of the spectral variable even in the same spectrum. For these critical values, which are completely classified, we give the corresponding explicit expression of the rogue wave solution that follows from the well known Darboux–Dressing transformation method. Although not all systems of two coupled nonlinear Schrödinger equations that have been derived in water wave dynamics are integrable, our investigation contributes to the understanding of new effects due to wave coupling, at least for model equations that, even if not integrable, are close enough to the model considered here. For instance, our findings lead to investigate rogue waves generated by instabilities due to self- and cross-interactions of defocusing type. An illustrative selection of two coupled rogue waves solutions is displayed.


Author(s):  
Wenyue Lu ◽  
Jianmin Yang ◽  
Haining Lv ◽  
Xin Li

Rogue wave is a kind of wave that possesses concentrated energy, strong nonlinear and enormous devastating. When it interacts with the deep-sea structures, the structure will suffer a serious threat, and it may even cause significant harm to the offshore staff and property. Studies on the mechanism of rogue wave are of great significance to the platform design and security. It is also one of the hot issues on the waves of hydrodynamic studies. Some breather-type solutions of NLS equation have been considered as prototypes of rogue waves in ocean. They can appear from smooth initial condition only with a certain disturb given by the exact solution of NLS. In this paper, we have numerically studied rogue waves based on fourth order nonlinear Schrödinger equation. We show that the peaks of the largest amplitude of the resulting waves can be described in terms of the Peregrine breather-type solution as the solution of NLS equation.


2017 ◽  
Vol 72 (4) ◽  
pp. 339-344
Author(s):  
Yan Zhang ◽  
Yinping Liu ◽  
Xiaoyan Tang

Abstract:In this article, a generalized Darboux transformation for the fourth-order nonlinear Schrödinger equation is constructed in terms of Darboux matrix method. Subsequently, breathers and the Nth-order rogue wave solutions of this equation are explicitly given in the light of the obtained Darboux transformation. Finally, we concretely discuss the dynamics of the obtained rogue waves, which are also demonstrated by some figures.


Sign in / Sign up

Export Citation Format

Share Document