CROSS-VIEW GAIT RECOGNITION WITH SHORT PROBE SEQUENCES: FROM VIEW TRANSFORMATION MODEL TO VIEW-INDEPENDENT STANCE-INDEPENDENT IDENTITY VECTOR

Author(s):  
MAODI HU ◽  
YUNHONG WANG ◽  
ZHAOXIANG ZHANG

Considering it is difficult to guarantee that at least one continuous complete gait cycle is captured in real applications, we address the multi-view gait recognition problem with short probe sequences. With unified multi-view population hidden markov models (umvpHMMs), the gait pattern is represented as fixed-length multi-view stances. By incorporating the multi-stance dynamics, the well-known view transformation model (VTM) is extended into a multi-linear projection model in a four-order tensor space, so that a view-independent stance-independent identity vector (VSIV) can be extracted. The main advantage is that the proposed VSIV is stable for each subject regardless of the camera location or the sequence length. Experiments show that our algorithm achieves encouraging performance for cross-view gait recognition even with short probe sequences.

Author(s):  
Yasushi Makihara ◽  
Ryusuke Sagawa ◽  
Yasuhiro Mukaigawa ◽  
Tomio Echigo ◽  
Yasushi Yagi

2020 ◽  
Vol 10 (21) ◽  
pp. 7619
Author(s):  
Jucheol Moon ◽  
Nhat Anh Le ◽  
Nelson Hebert Minaya ◽  
Sang-Il Choi

A person’s gait is a behavioral trait that is uniquely associated with each individual and can be used to recognize the person. As information about the human gait can be captured by wearable devices, a few studies have led to the proposal of methods to process gait information for identification purposes. Despite recent advances in gait recognition, an open set gait recognition problem presents challenges to current approaches. To address the open set gait recognition problem, a system should be able to deal with unseen subjects who have not included in the training dataset. In this paper, we propose a system that learns a mapping from a multimodal time series collected using insole to a latent (embedding vector) space to address the open set gait recognition problem. The distance between two embedding vectors in the latent space corresponds to the similarity between two multimodal time series. Using the characteristics of the human gait pattern, multimodal time series are sliced into unit steps. The system maps unit steps to embedding vectors using an ensemble consisting of a convolutional neural network and a recurrent neural network. To recognize each individual, the system learns a decision function using a one-class support vector machine from a few embedding vectors of the person in the latent space, then the system determines whether an unknown unit step is recognized as belonging to a known individual. Our experiments demonstrate that the proposed framework recognizes individuals with high accuracy regardless they have been registered or not. If we could have an environment in which all people would be wearing the insole, the framework would be used for user verification widely.


Author(s):  
Redouane Esbai ◽  
Fouad Elotmani ◽  
Fatima Zahra Belkadi

<span>The growth of application architectures in all areas (e.g. Astrology, Meteorology, E-commerce, social network, etc.) has resulted in an exponential increase in data volumes, now measured in Petabytes. Managing these volumes of data has become a problem that relational databases are no longer able to handle because of the acidity properties. In response to this scaling up, new concepts have emerged such as NoSQL. In this paper, we show how to design and apply transformation rules to migrate from an SQL relational database to a Big Data solution within NoSQL. For this, we use the Model Driven Architecture (MDA) and the transformation languages like as MOF 2.0 QVT (Meta-Object Facility 2.0 Query-View-Transformation) and Acceleo which define the meta-models for the development of transformation model. The transformation rules defined in this work can generate, from the class diagram, a CQL code for creation column-oriented NoSQL database.</span>


Sign in / Sign up

Export Citation Format

Share Document