Nonbinary Low-Density Parity Check Decoding Algorithm Research-Based Majority Logic Decoding

Author(s):  
Zhong-xun Wang ◽  
Yang Xi ◽  
Zhan-kai Bao

In the nonbinary low-density parity check (NB-LDPC) codes decoding algorithms, the iterative hard reliability based on majority logic decoding (IHRB-MLGD) algorithm has poor error correction performance. The essential reason is that the hard information is used in the initialization and iterative processes. For the problem of partial loss of information, when the reliability is assigned during initialization, the error correction performance is improved by modifying the assignment of reliability at initialization. The initialization process is determined by the probability of occurrence of the number of erroneous bits in the symbol and the Hamming distance. In addition, the IHRB-MLGD decoding algorithm uses the hard decision in the iterative decoding process. The improved algorithm adds soft decision information in the iterative process, which improves the error correction performance while only slightly increasing the decoding complexity, and improves the reliability accumulation process which makes the algorithm more stable. The simulation results indicate that the proposed algorithm has a better decoding performance than IHRB algorithm.

Author(s):  
Bradley Comar

This paper describes a method of combining cryptographic encoding and low density parity check (LDPC) encoding for the purpose of enhancing privacy. This method uses pseudorandom number generators (PRNGs) to create parity check matrices that are constantly updated. The generated cyphertext is at least as private as a standard additive (XORing) cryptosystem, and also has error correcting capability. The eavesdropper, Eve, has the expanded burden of having to perform cryptanalysis and error correction simultaneously.


Sign in / Sign up

Export Citation Format

Share Document