Electric Load Movement Forecasting Based on the DFT Interpolation with Periodic Extension

2015 ◽  
Vol 24 (08) ◽  
pp. 1550123
Author(s):  
Zong-Chang Yang

Electric load forecasting is increasingly important for the industry. This study addresses the load forecasting based on the discrete Fourier transform (DFT) interpolation. As the most common analysis method in the frequency domain, the conventional Fourier analysis cannot be directly applied to prediction. From the perspective of time-series analysis, electric load movement influenced by various factors is also a time-series, which is usually subject to cyclical variations. Then with periodic extension for the load movement, a forecasting approach based on the DFT interpolation is proposed for predicting its movement. The proposed DFT interpolation prediction model is applied to experiments of forecasting the daily EUNITE load movement and annual load movement of State Grid Corporation in China. The experimental results and analysis show potentiality of the proposed method. Performance comparisons indicate that the proposed DFT interpolation model performs better than the three commonly used interpolation algorithms as well as the classical autoregressive (AR) model, the ARMA model, and the BP-artificial neural network (ANN) model on the same forecasting tasks.

2021 ◽  
pp. 11343-11357
Author(s):  
Shahida Khatoon, Ibraheem, Priti, Mohammad Shahid

Load Forecasting is of great significance for effective and efficient operation of power system. Use of time series is of much importance in load forecasting. In this study, effectiveness of different time series techniques is identified to gathered valuable information. The objective is to predict electric load efficiently and effectively. This paper analyses the prediction accuracy of variety of time series method in modeling Electric load forecasts. The study examines the time series forecasting methods applied to estimate future electric load, specifically, Moving Average (MA), Linear Trend, the Exponential and Parabolic Trend. A comparison of different forecasting techniques of Time Series is demonstrated on real time data. The data utilized for forecast is made available through a distribution company of India. The traditional linear models and hybrid models along with ANN are developed. These models are appraised for the forecasting capability.


2012 ◽  
Author(s):  
Ruhaidah Samsudin ◽  
Puteh Saad ◽  
Ani Shabri

In this paper, time series prediction is considered as a problem of missing value. A model for the determination of the missing time series value is presented. The hybrid model integrating autoregressive intergrated moving average (ARIMA) and artificial neural network (ANN) model is developed to solve this problem. The developed models attempts to incorporate the linear characteristics of an ARIMA model and nonlinear patterns of ANN to create a hybrid model. In this study, time series modeling of rice yield data in Muda Irrigation area. Malaysia from 1995 to 2003 are considered. Experimental results with rice yields data sets indicate that the hybrid model improve the forecasting performance by either of the models used separately. Key words: ARIMA; Box and Jenkins; neural networks; rice yields; hybrid ANN model


2007 ◽  
Vol 10 ◽  
pp. 67-76 ◽  
Author(s):  
P. S. Lucio ◽  
F. C. Conde ◽  
I. F. A. Cavalcanti ◽  
A. I. Serrano ◽  
A. M. Ramos ◽  
...  

Abstract. Climatological records users, frequently, request time series for geographical locations where there is no observed meteorological attributes. Climatological conditions of the areas or points of interest have to be calculated interpolating observations in the time of neighboring stations and climate proxy. The aim of the present work is the application of reliable and robust procedures for monthly reconstruction of precipitation time series. Time series is a special case of symbolic regression and we can use Artificial Neural Network (ANN) to explore the spatiotemporal dependence of meteorological attributes. The ANN seems to be an important tool for the propagation of the related weather information to provide practical solution of uncertainties associated with interpolation, capturing the spatiotemporal structure of the data. In practice, one determines the embedding dimension of the time series attractor (delay time that determine how data are processed) and uses these numbers to define the network's architecture. Meteorological attributes can be accurately predicted by the ANN model architecture: designing, training, validation and testing; the best generalization of new data is obtained when the mapping represents the systematic aspects of the data, rather capturing the specific details of the particular training set. As illustration one takes monthly total rainfall series recorded in the period 1961–2005 in the Rio Grande do Sul – Brazil. This reliable and robust reconstruction method has good performance and in particular, they were able to capture the intrinsic dynamic of atmospheric activities. The regional rainfall has been related to high-frequency atmospheric phenomena, such as El Niño and La Niña events, and low frequency phenomena, such as the Pacific Decadal Oscillation.


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 149 ◽  
Author(s):  
Salah Bouktif ◽  
Ali Fiaz ◽  
Ali Ouni ◽  
Mohamed Adel Serhani

Time series analysis using long short term memory (LSTM) deep learning is a very attractive strategy to achieve accurate electric load forecasting. Although it outperforms most machine learning approaches, the LSTM forecasting model still reveals a lack of validity because it neglects several characteristics of the electric load exhibited by time series. In this work, we propose a load-forecasting model based on enhanced-LSTM that explicitly considers the periodicity characteristic of the electric load by using multiple sequences of inputs time lags. An autoregressive model is developed together with an autocorrelation function (ACF) to regress consumption and identify the most relevant time lags to feed the multi-sequence LSTM. Two variations of deep neural networks, LSTM and gated recurrent unit (GRU) are developed for both single and multi-sequence time-lagged features. These models are compared to each other and to a spectrum of data mining benchmark techniques including artificial neural networks (ANN), boosting, and bagging ensemble trees. France Metropolitan’s electricity consumption data is used to train and validate our models. The obtained results show that GRU- and LSTM-based deep learning model with multi-sequence time lags achieve higher performance than other alternatives including the single-sequence LSTM. It is demonstrated that the new models can capture critical characteristics of complex time series (i.e., periodicity) by encompassing past information from multiple timescale sequences. These models subsequently achieve predictions that are more accurate.


2011 ◽  
Vol 201-203 ◽  
pp. 2685-2689
Author(s):  
Chong Gao ◽  
Hai Jie Ma ◽  
Pei Na Gao

To improve the accuracy of load forecasting is the focus of the load forecasting. As the daily load by various environmental factors and periodical, this makes the load time series of changes occurring during non-stationary random process. The key of improving the accuracy of artificial neural network training is to select effective training sample. This paper based on the time series forecasting techniques’ random time series autocorrelation function to select the neural network training samples. The method of modeling is more objective. By example, the comparison with autoregressive (AR) Model predictions and BP Artificial Neural Network (ANN) predicted results through error analysis and confirmed the proposed scheme good performance.


Sign in / Sign up

Export Citation Format

Share Document