Single-Electron Fault Tolerance in Quantum Cellular Automata Majority Gate

Author(s):  
Hamid Sheibani ◽  
Ehsan Rahimi
2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Razieh Farazkish ◽  
Samira Sayedsalehi ◽  
Keivan Navi

Quantum-dot Cellular Automata (QCA) is one of the most attractive technologies for computing at nanoscale. The principle element in QCA is majority gate. In this paper, fault-tolerance properties of the majority gate is analyzed. This component is suitable for designing fault-tolerant QCA circuits. We analyze fault-tolerance properties of three-input majority gate in terms of misalignment, missing, and dislocation cells. In order to verify the functionality of the proposed component some physical proofs using kink energy (the difference in electrostatic energy between the two polarization states) and computer simulations using QCA Designer tool are provided. Our results clearly demonstrate that the redundant version of the majority gate is more robust than the standard style for this gate.


2021 ◽  
Author(s):  
Yaser Rahmani ◽  
Saeed Rasouli Heikalabad ◽  
Mohammad Mosleh

Abstract Quantum-dot Cellular Automata (QCA) technology is believed to be a good alternative to CMOS technology. This nanoscale technology can provide a platform for design and implementation of high performance and power efficient logic circuits. However, the fabrication of QCA circuits is susceptible to faults appearing in this form of missing cells, additional cells, rotated cells, and displaced cells. Over the years, several solutions have been proposed to address these problems. This paper presents a new solution for improving the fault tolerance of three input majority gate. The proposed majority gate is then used to design 2-1 multiplexer and 4-1 multiplexer. The proposed designs are implemented in QCA Designer. Simulation results demonstrate significant improvements in terms of fault tolerance and area requirement.


ChemPhysChem ◽  
2021 ◽  
Author(s):  
Andrew Palii ◽  
Denis Korchagin ◽  
Sergey Aldoshin ◽  
J. M. Clemente-Juan ◽  
Shmuel Zilberg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document