scholarly journals NUMERICAL SOLUTIONS OF A VECTOR GINZBURG–LANDAU EQUATION WITH A TRIPLE-WELL POTENTIAL

2003 ◽  
Vol 13 (11) ◽  
pp. 3295-3306 ◽  
Author(s):  
JOHN M. NEUBERGER ◽  
DENNIS R. RICE ◽  
JAMES W. SWIFT

We numerically compute solutions to the vector Ginzburg–Landau equation with a triple-well potential. We use the Galerkin Newton Gradient Algorithm of Neuberger and Swift and bifurcation techniques to find solutions. With a small parameter, we find a Morse index 2 triple junction solution. This is the solution for which Flores, Padilla and Tonegawa gave an existence proof. We classify all of the solutions guaranteed to exist by the Equivariant Branching Lemma at the first bifurcation points of the trivial solutions. Guided by the symmetry analysis, we numerically compute the solution branches.

Author(s):  
Виктор Иванович Паасонен ◽  
Михаил Петрович Федорук

Решение актуальной задачи повышения порядка точности разностных методов решения задач нелинейной волоконной оптики выше четвертого путем непосредственного построения сложных схем на расширенных шаблонах сопряжено с усложнением матрицы системы и с затруднениями в постановке дополнительных граничных условий. Кроме того, при таком подходе не происходит одновременное повышение точности также и по эволюционной переменной. В данной работе рассматривается альтернативный путь - применение экстраполяции Ричардсона, которая сводится к построению подходящих линейных комбинаций решений на различных сетках. Этот способ позволяет повышать порядок точности по обеим переменным, избегая при этом проблем с усложнением шаблонов, постановкой дополнительных граничных условий и реализацией алгоритмов. Как средство дополнительного улучшения точности наряду с простыми (однократными) поправками исследуются также двойные поправки на основе экстраполяции Ричардсона. Методика протестирована на нескольких точных решениях уравнения Гинзбурга - Ландау Increasing the order of accuracy for difference methods is an actual problem in nonlinear fiber optics. Computations, which use higher than the fourth order of accuracy by the direct construction of complex circuits on extended templates pose the complication of the system matrix and difficulties in setting additional boundary conditions. In addition, with this approach, there is no simultaneous increase in accuracy for the evolutionary variable. In this paper, we consider an alternative way, namely, application of the Richardson extrapolation, which reduces to construction of suitable linear combinations for solutions on various grids. This method allows improving the order of accuracy for both variables, while avoiding problems associated with the complication of templates, implementation of algorithms and setting additional boundary conditions. Double corrections are also considered to further improve accuracy. The technique was tested on exact solutions of the Ginzburg - Landau equation


2017 ◽  
Vol 31 (28) ◽  
pp. 1750258
Author(s):  
Ming-Xiao Yu ◽  
Bo Tian ◽  
Jun Chai ◽  
Hui-Min Yin ◽  
Zhong Du

In this paper, we investigate a nonlinear fiber described by a (2[Formula: see text]+[Formula: see text]1)-dimensional complex Ginzburg–Landau equation with the chromatic dispersion, optical filtering, nonlinear and linear gain. Bäcklund transformation in the bilinear form is constructed. With the modified bilinear method, analytic soliton solutions are obtained. For the soliton, the amplitude can decrease or increase when the absolute value of the nonlinear or linear gain is enlarged, and the width can be compressed or amplified when the absolute value of the chromatic dispersion or optical filtering is enhanced. We study the stability of the numerical solutions numerically by applying the increasing amplitude, embedding the white noise and adding the Gaussian pulse to the initial values based on the analytic solutions, which shows that the numerical solutions are stable, not influenced by the finite initial perturbations.


1999 ◽  
Vol 129 (6) ◽  
pp. 1157-1169 ◽  
Author(s):  
M. Comte ◽  
P. Mironescu

We consider the Ginzburg–Landau type equationwhereGis a smooth bounded domain in ℝ2,g ∊ C∞(∂G;ℝ2/ {0}), andε> 0 is a small parameter. We prove the uniqueness of solutions to this equation under some non-vanishing assumptions onuε, or under conditions on the boundary functiong.


2001 ◽  
Vol 35 (2) ◽  
pp. 159-161
Author(s):  
Liu Shi-Da ◽  
Liu Shi-Kuo ◽  
Fu Zun-Tao ◽  
Zhao Qiang

Sign in / Sign up

Export Citation Format

Share Document