WHAT MAPS CAN ADMIT TWO-SIDED SYMBOLIC DYNAMICAL SYSTEMS?

2005 ◽  
Vol 15 (04) ◽  
pp. 1485-1491
Author(s):  
JIE-HUA MAI

A continuous map f from a metric space X to itself is said to contain a two-sided symbolic dynamical system if there exists an invariant set X0 of f such that the subsystem f|X0 is topologically conjugate to the shift map on a two-sided sequence space of some symbols. In this paper we show that, for any given integer n ≥ 2, there exists a Lipschitz continuous interval map which contains a two-sided symbolic dynamical system of n symbols. Furthermore, we investigate the effect of differentiability and monotonicity assumptions, and prove that neither piecewise monotonic nor piecewise continuously differentiable graph map can contain a two-sided symbolic dynamical system.

2017 ◽  
Vol 39 (3) ◽  
pp. 604-619 ◽  
Author(s):  
SIDDHARTHA BHATTACHARYA ◽  
TULLIO CECCHERINI-SILBERSTEIN ◽  
MICHEL COORNAERT

Let$X$be a compact metrizable group and let$\unicode[STIX]{x1D6E4}$be a countable group acting on$X$by continuous group automorphisms. We give sufficient conditions under which the dynamical system$(X,\unicode[STIX]{x1D6E4})$is surjunctive, i.e. every injective continuous map$\unicode[STIX]{x1D70F}:X\rightarrow X$commuting with the action of$\unicode[STIX]{x1D6E4}$is surjective.


2012 ◽  
Vol 204-208 ◽  
pp. 4776-4779
Author(s):  
Lin Huang ◽  
Huo Yun Wang ◽  
Hong Ying Wu

By a dynamical system we mean a compact metric space together with a continuous map . This article is devoted to study of invariant scrambled sets. A dynamical system is a periodically adsorbing system if there exists a fixed point and a periodic point such that and are dense in . We show that every topological weakly mixing and periodically adsorbing system contains an invariant and dense Mycielski scrambled set for some , where has no isolated points. A subset is a Myceilski set if it is a countable union of Cantor sets.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Yaoyao Lan ◽  
Qingguo Li ◽  
Chunlai Mu ◽  
Hua Huang

Letting(X,d)be a metric space,f:X→Xa continuous map, and(ℱ(X),D)the space of nonempty fuzzy compact subsets ofXwith the Hausdorff metric, one may study the dynamical properties of the Zadeh's extensionf̂:ℱ(X)→ℱ(X):u↦f̂u. In this paper, we present, as a response to the question proposed by Román-Flores and Chalco-Cano 2008, some chaotic relations betweenfandf̂. More specifically, we study the transitivity, weakly mixing, periodic density in system(X,f), and its connections with the same ones in its fuzzified system.


1993 ◽  
Vol 13 (1) ◽  
pp. 1-5 ◽  
Author(s):  
Nobuo Aoki ◽  
Jun Tomiyama

AbstractFor a topological dynamical system Σ = (X, σ) where X is a compact metric space with a single homeomorphism σ, we determine the largest postliminal ideal of the transformation group C*-algebra A(Σ) as the intersection of all kernels of irreducible representations of A(Σ) induced from those recurrent points which are not periodic. The result implies characterizations of topological dynamical systems whose transformation group C*-algebras are anti-liminal and post-liminal, that is, of type 1.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yaoyao Lan ◽  
Chunlai Mu

LetXdenote a compact metric space and letf : X→Xbe a continuous map. It is known that a discrete dynamical system (X,f) naturally induces its fuzzified counterpart, that is, a discrete dynamical system on the space of fuzzy compact subsets ofX. In 2011, a new generalized form of Zadeh’s extension principle, so-calledg-fuzzification, had been introduced by Kupka 2011. In this paper, we study the relations between Martelli’s chaotic properties of the original andg-fuzzified system. More specifically, we study the transitivity, sensitivity, and stability of the orbits in system (X,f) and its connections with the same ones in itsg-fuzzified system.


2015 ◽  
Vol 25 (09) ◽  
pp. 1550115 ◽  
Author(s):  
Jiandong Yin ◽  
Zuoling Zhou

Let X be a compact metric space and f : X → X be a continuous map. In this paper, ergodic chaos and strongly ergodic chaos are introduced, and it is proven that f is strongly ergodically chaotic if f is transitive but not minimal and has a full measure center. In addition, some sufficient conditions for f to be Ruelle–Takens chaotic are presented. For instance, we prove that f is Ruelle–Takens chaotic if f is transitive and there exists a countable base [Formula: see text] of X such that for each i > 0, the meeting time set N(Ui, Ui) for Ui with respect to itself has lower density larger than [Formula: see text].


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Dhaval Thakkar ◽  
Ruchi Das

We define and study expansiveness, shadowing, and topological stability for a nonautonomous discrete dynamical system induced by a sequence of homeomorphisms on a metric space.


2018 ◽  
Vol 32 (15) ◽  
pp. 1850166 ◽  
Author(s):  
Lixin Jiao ◽  
Lidong Wang ◽  
Fengquan Li ◽  
Heng Liu

Consider the surjective continuous map [Formula: see text]: [Formula: see text] defined on a compact metric space X. Let [Formula: see text] be the space of all non-empty compact subsets of X equipped with the Hausdorff metric and define [Formula: see text]: [Formula: see text] by [Formula: see text] for any [Formula: see text]. In this paper, we introduce several stronger versions of sensitivities, such as multi-sensitivity with respect to a vector, [Formula: see text]-sensitivity, strong multi-sensitivity. We obtain some basic properties of the concepts of these sensitivities and discuss the relationships with other sensitivities for continuous self-map on [0,[Formula: see text]1]. Some sufficient conditions for a dynamical system to be [Formula: see text]-sensitive are presented. Also, it is shown that the strong multi-sensitivity of f implies that [Formula: see text] is [Formula: see text]-sensitive. In turn, the [Formula: see text]-sensitivity of [Formula: see text] implies that [Formula: see text] is [Formula: see text]-sensitive. In particular, it is proved that if [Formula: see text] is a multi-transitive map with dense periodic sets, then f is [Formula: see text]-sensitive. Finally, we give a multi-sensitive example which is not [Formula: see text]-sensitive.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Heng Liu ◽  
Li Liao ◽  
Lidong Wang

Consider the surjective continuous mapf:X→X, whereXis a compact metric space. In this paper we give several stronger versions of sensitivity, such as thick sensitivity, syndetic sensitivity, thickly syndetic sensitivity, and strong sensitivity. We establish the following. (1) If(X,f)is minimal and sensitive, then(X,f)is syndetically sensitive. (2) Weak mixing implies thick sensitivity. (3) If(X,f)is minimal and weakly mixing, then it is thickly syndetically sensitive. (4) If(X,f)is a nonminimalM-system, then it is thickly syndetically sensitive. Devaney chaos implies thickly periodic sensitivity. (5) We give a syndetically sensitive system which is not thickly sensitive. (6) We give thickly syndetically sensitive examples but not cofinitely sensitive ones.


2016 ◽  
Vol 30 (02) ◽  
pp. 1550274 ◽  
Author(s):  
Lidong Wang ◽  
Jianhua Liang ◽  
Yiyi Wang ◽  
Xuelian Sun

Let [Formula: see text] be a compact metric space without isolated points and let [Formula: see text] be a continuous map. In this paper, if [Formula: see text] is a transitive dynamical system with a repelling periodic point, then [Formula: see text] is chaotic in the sense of Kato. In addition, if [Formula: see text] is weakly topologically mixing, then [Formula: see text] is chaotic in the strong sense of Kato.


Sign in / Sign up

Export Citation Format

Share Document