A SCALAR SIGN FUNCTION APPROACH TO DIGITAL CONTROL OF CONTINUOUS-TIME CHAOTIC SYSTEMS WITH STATE CONSTRAINTS

2009 ◽  
Vol 19 (06) ◽  
pp. 2009-2029 ◽  
Author(s):  
JIAN WU ◽  
LEANG S. SHIEH ◽  
JASON S. H. TSAI

In this paper, a scalar sign function-based digital design methodology is presented to develop a digital tracking controller for the continuous-time chaotic systems with absolute value state constraints. A scalar sign function, which is the counterpart of the well-known matrix sign function, is utilized to approximately represent the absolute value state term by a rational function. As a result, the original state constrained nonsmooth nonlinear system becomes a smooth nonlinear system having rational nonlinear terms. Then, an optimal linearization technique is applied to the afore-mentioned nonlinear system for finding an optimal linearization model, which has the exact dynamics of the original nonlinear system at any operating point of interest with minimal modeling error in the vicinity of the operating point on the trajectory. To overcome the effect of modeling errors and to quickly track the desired reference signals, a high-gain optimal analog tracker is designed for the obtained linear model. For practical implementation of the high-gain analog tracker, the prediction-based digital redesign technique is utilized to obtain a low-gain digital tracker for digital control of the sampled-data nonlinear system with constrained states. Chua's chaotic circuits are used to demonstrate the effectiveness of the proposed approach.

2005 ◽  
Vol 15 (08) ◽  
pp. 2433-2455
Author(s):  
JOSE I. CANELON ◽  
LEANG S. SHIEH ◽  
SHU M. GUO ◽  
HEIDAR A. MALKI

This paper presents a neural network-based digital redesign approach for digital control of continuous-time chaotic systems with unknown structures and parameters. Important features of the method are that: (i) it generalizes the existing optimal linearization approach for the class of state-space models which are nonlinear in the state but linear in the input, to models which are nonlinear in both the state and the input; (ii) it develops a neural network-based universal optimal linear state-space model for unknown chaotic systems; (iii) it develops an anti-digital redesign approach for indirectly estimating an analog control law from a fast-rate digital control law without utilizing the analog models. The estimated analog control law is then converted to a slow-rate digital control law via the prediction-based digital redesign method; (iv) it develops a linear time-varying piecewise-constant low-gain tracker which can be implemented using microprocessors. Illustrative examples are presented to demonstrate the effectiveness of the proposed methodology.


An iterative criterion for the asymptotic steadiness of a linear descriptor system is considered. The criterion is based on an iterative algorithm for computing a generalized matrix sign-function. As an example, the problem of analyzing the asymptotic steadiness of a large descriptor system is given. Keywords linear descriptor system; steadiness criterion; matrix sign-function; search algorithm


2012 ◽  
Vol 22 (12) ◽  
pp. 1250300 ◽  
Author(s):  
FERNANDO O. SOUZA ◽  
REINALDO M. PALHARES ◽  
EDUARDO M. A. M. MENDES ◽  
LEONARDO A. B. TORRES

The problem of control synthesis for master–slave synchronization of continuous time chaotic systems of Lur'e type using sampled feedback control subject to sampling time random fluctuation and data packet dropouts is investigated. New stability and stabilization conditions are proposed based on Linear Matrix Inequalities (LMIs). The idea is to connect two very efficient approaches to deal with delayed systems: the discretized Lyapunov functional for systems with pointwise delay and the convex analysis for systems with time-varying delay. Simulation examples based on synchronizing coupled Chua's circuits are used to illustrate the effectiveness of the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document