Exact Solutions and Bifurcations of a Modulated Equation in a Discrete Nonlinear Electrical Transmission Line (I)

2015 ◽  
Vol 25 (01) ◽  
pp. 1550016 ◽  
Author(s):  
Jibin Li ◽  
Lin Jiang

In this paper, we consider a model which is a modulated equation in a discrete nonlinear electrical transmission line. By investigating the dynamical behavior and bifurcations of solutions of the planar dynamical systems, we derive all explicit exact parametric representations of solutions (including smooth solitary wave solutions, smooth periodic wave solutions, peakons, compactons, periodic cusp wave solutions, etc.) under different parameter conditions.

2015 ◽  
Vol 25 (03) ◽  
pp. 1550045 ◽  
Author(s):  
Jibin Li ◽  
Fengjuan Chen

In this paper, we consider a model which is the modulated equation in a discrete nonlinear electrical transmission line. This model is an integrable planar dynamical system having three singular straight lines. By using the theory of singular systems and investigating the dynamical behavior, we obtain bifurcations of the phase portraits of the system under different parameter conditions. Corresponding to some special level curves, we derive possible exact explicit parametric representations of solutions (including smooth solitary wave and periodic wave solutions, periodic cusp wave solutions) under different parameter conditions.


2006 ◽  
Vol 16 (08) ◽  
pp. 2235-2260 ◽  
Author(s):  
JIBIN LI ◽  
JIANHONG WU ◽  
HUAIPING ZHU

Using the method of planar dynamical systems to a higher order wave equations of KdV type, the existence of smooth and nonsmooth solitary wave, kink wave and uncountably infinite many periodic wave solutions is proved. In different regions of the parametric space, the sufficient conditions to guarantee the existence of the above solutions are given. In some spatial conditions, the exact explicit parametric representations of solitary wave solutions are determined.


2016 ◽  
Vol 26 (06) ◽  
pp. 1650106 ◽  
Author(s):  
KitIan Kou ◽  
Jibin Li

In this paper, we consider two singular nonlinear planar dynamical systems created from the studies of one-dimensional bright and dark spatial solitons for one-dimensional beams in a nonlocal Kerr-like media. On the basis of the investigation of the dynamical behavior and bifurcations of solutions of the planar dynamical systems, we obtain all possible explicit exact parametric representations of solutions (including solitary wave solutions, periodic wave solutions, peakon and periodic peakons, compacton solutions, etc.) under different parameter conditions.


2016 ◽  
Vol 26 (01) ◽  
pp. 1650011 ◽  
Author(s):  
Jibin Li ◽  
Fengjuan Chen

In this paper, we consider a modulated equation in a discrete nonlinear electrical transmission line. This model is an integrable planar dynamical system having three singular straight lines. By using the theory of singular systems to investigate the dynamical behavior for this system, we obtain bifurcations of phase portraits under different parameter conditions. Corresponding to some special level curves, we derive exact explicit parametric representations of solutions (including smooth solitary wave solutions, peakons, compactons, periodic cusp wave solutions) under different parameter conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
XiaoHua Liu ◽  
CaiXia He

By using the theory of planar dynamical systems to a coupled nonlinear wave equation, the existence of bell-shaped solitary wave solutions, kink-shaped solitary wave solutions, and periodic wave solutions is obtained. Under the different parametric values, various sufficient conditions to guarantee the existence of the above solutions are given. With the help of three different undetermined coefficient methods, we investigated the new exact explicit expression of all three bell-shaped solitary wave solutions and one kink solitary wave solutions with nonzero asymptotic value for a coupled nonlinear wave equation. The solutions cannot be deduced from the former references.


2012 ◽  
Vol 2012 ◽  
pp. 1-25 ◽  
Author(s):  
Ming Song ◽  
Zhengrong Liu

We use the bifurcation method of dynamical systems to study the periodic wave solutions and their limits for the generalized KP-BBM equation. A number of explicit periodic wave solutions are obtained. These solutions contain smooth periodic wave solutions and periodic blow-up solutions. Their limits contain periodic wave solutions, kink wave solutions, unbounded wave solutions, blow-up wave solutions, and solitary wave solutions.


2012 ◽  
Vol 22 (12) ◽  
pp. 1250305 ◽  
Author(s):  
JIBIN LI ◽  
ZHIJUN QIAO

In this paper, we apply the method of dynamical systems to a generalized two-component Camassa–Holm system. Through analysis, we obtain solitary wave solutions, kink and anti-kink wave solutions, cusp wave solutions, breaking wave solutions, and smooth and nonsmooth periodic wave solutions. To guarantee the existence of these solutions, we give constraint conditions among the parameters associated with the generalized Camassa–Holm system. Choosing some special parameters, we obtain exact parametric representations of the traveling wave solutions.


2009 ◽  
Vol 64 (5-6) ◽  
pp. 309-314 ◽  
Author(s):  
Song-Hua Ma ◽  
Yi-Pin Lu ◽  
Jian-Ping Fang ◽  
Zhi-Jie Lv

Abstract With an extended mapping approach and a linear variable separation approach, a series of solutions (including theWeierstrass elliptic function solutions, solitary wave solutions, periodic wave solutions and rational function solutions) of the (2+1)-dimensional modified dispersive water-wave system (MDWW) is derived. Based on the derived solutions and using some multi-valued functions, we find a few new folded solitary wave excitations.


2018 ◽  
Vol 23 (1) ◽  
pp. 17-32 ◽  
Author(s):  
Fanchao Kong ◽  
Zhiguo Luo ◽  
Hongjun Qiu

This work deals with the existence of periodic wave solutions and nonexistence of solitary wave solutions for a class of second-order singular p-Laplacian systems with impulsive effects. A sufficient criterion for the solutions of the considered system is provided via an innovative method of the mountain pass theorem and an approximation technique. Some corresponding results in the literature can be enriched and extended.


Sign in / Sign up

Export Citation Format

Share Document