scholarly journals New Exact Solitary Wave Solutions of a Coupled Nonlinear Wave Equation

2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
XiaoHua Liu ◽  
CaiXia He

By using the theory of planar dynamical systems to a coupled nonlinear wave equation, the existence of bell-shaped solitary wave solutions, kink-shaped solitary wave solutions, and periodic wave solutions is obtained. Under the different parametric values, various sufficient conditions to guarantee the existence of the above solutions are given. With the help of three different undetermined coefficient methods, we investigated the new exact explicit expression of all three bell-shaped solitary wave solutions and one kink solitary wave solutions with nonzero asymptotic value for a coupled nonlinear wave equation. The solutions cannot be deduced from the former references.

2006 ◽  
Vol 16 (08) ◽  
pp. 2235-2260 ◽  
Author(s):  
JIBIN LI ◽  
JIANHONG WU ◽  
HUAIPING ZHU

Using the method of planar dynamical systems to a higher order wave equations of KdV type, the existence of smooth and nonsmooth solitary wave, kink wave and uncountably infinite many periodic wave solutions is proved. In different regions of the parametric space, the sufficient conditions to guarantee the existence of the above solutions are given. In some spatial conditions, the exact explicit parametric representations of solitary wave solutions are determined.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Weiguo Rui

By using the integral bifurcation method together with factoring technique, we study a water wave model, a high-order nonlinear wave equation of KdV type under some newly solvable conditions. Based on our previous research works, some exact traveling wave solutions such as broken-soliton solutions, periodic wave solutions of blow-up type, smooth solitary wave solutions, and nonsmooth peakon solutions within more extensive parameter ranges are obtained. In particular, a series of smooth solitary wave solutions and nonsmooth peakon solutions are obtained. In order to show the properties of these exact solutions visually, we plot the graphs of some representative traveling wave solutions.


2016 ◽  
Vol 8 (6) ◽  
pp. 1084-1098
Author(s):  
Wei Wang ◽  
Chunhai Li ◽  
Wenjing Zhu

AbstractDynamical system theory is applied to the integrable nonlinear wave equation ut±(u3–u2)x+(u3)xxx=0. We obtain the single peak solitary wave solutions and compacton solutions of the equation. Regular compacton solution of the equation correspond to the case of wave speed c=0. In the case of c≠0, we find smooth soliton solutions. The influence of parameters of the traveling wave solutions is explored by using the phase portrait analytical technique. Asymptotic analysis and numerical simulations are provided for these soliton solutions of the nonlinear wave equation.


2021 ◽  
Author(s):  
Lingchao He ◽  
Jianwen Zhang ◽  
Zhonglong Zhao

Abstract In this paper, we consider a generalized (2+1)-dimensional nonlinear wave equation. Based on the bilinear, the N-soliton solutions are obtained. The resonance Y-type soliton and the interaction solutions between M-resonance Y-type solitons and P-resonance Y-type solitons are constructed by adding some new constraints to the parameters of the N-soliton solutions. The new type of two-opening resonance Y-type soliton solutions are presented by choosing some appropriate parameters in 3-soliton solutions. The hybrid solutions consisting of resonance Y-type solitons, breathers and lumps are investigated. The trajectories of the lump waves before and after the collision with the Y-type solitons are analyzed from the perspective of mathematical mechanism. Furthermore, the multi-dimensional Riemann-theta function is employed to investigate the quasi-periodic wave solutions. The one-periodic and two-periodic wave solutions are obtained. The asymptotic properties are systematically analyzed, which establish the relations between the quasi-periodic wave solutions and the soliton solutions. The results may be helpful to provide some effective information to analyze the dynamical behaviors of solitons, fluid mechanics, shallow water waves and optical solitons.


2015 ◽  
Vol 25 (01) ◽  
pp. 1550016 ◽  
Author(s):  
Jibin Li ◽  
Lin Jiang

In this paper, we consider a model which is a modulated equation in a discrete nonlinear electrical transmission line. By investigating the dynamical behavior and bifurcations of solutions of the planar dynamical systems, we derive all explicit exact parametric representations of solutions (including smooth solitary wave solutions, smooth periodic wave solutions, peakons, compactons, periodic cusp wave solutions, etc.) under different parameter conditions.


2021 ◽  
pp. 2150389
Author(s):  
Ai-Juan Zhou ◽  
Bing-Jie He

In this paper, we study exact solutions of the generalized shallow water wave equation. Based on the bilinear equation, we get [Formula: see text]-solitary wave solutions. For special parameters, we find [Formula: see text]-fusionable wave solutions. For complex parameters, periodic wave solutions and elastic interactional solutions of solitary waves with periodic waves are obtained. The properties of obtained exact solutions are also analyzed theoretically and graphically by using asymptotic analysis.


Sign in / Sign up

Export Citation Format

Share Document