Integrability and Dynamics of Quadratic Three-Dimensional Differential Systems Having an Invariant Paraboloid

2016 ◽  
Vol 26 (08) ◽  
pp. 1650134 ◽  
Author(s):  
Marcelo Messias ◽  
Alisson C. Reinol

Invariant algebraic surfaces are commonly observed in differential systems arising in mathematical modeling of natural phenomena. In this paper, we study the integrability and dynamics of quadratic polynomial differential systems defined in [Formula: see text] having an elliptic paraboloid as an invariant algebraic surface. We obtain the normal form for these kind of systems and, by using the invariant paraboloid, we prove the existence of first integrals, exponential factors, Darboux invariants and inverse Jacobi multipliers, for suitable choices of parameter values. We characterize all the possible configurations of invariant parallels and invariant meridians on the invariant paraboloid and give necessary conditions for the invariant parallel to be a limit cycle and for the invariant meridian to have two orbits heteroclinic to a point at infinity. We also study the dynamics of a particular class of the quadratic polynomial differential systems having an invariant paraboloid, giving information about localization and local stability of finite singular points and, by using the Poincaré compactification, we study their dynamics on the Poincaré sphere (at infinity). Finally, we study the well-known Rabinovich system in the case of invariant paraboloids, performing a detailed study of its dynamics restricted to these invariant algebraic surfaces.

2018 ◽  
Vol 28 (03) ◽  
pp. 1830006 ◽  
Author(s):  
Marcelo Messias ◽  
Rafael Paulino Silva

In this paper, we give an algebraic criterion to determine the nonchaotic behavior for polynomial differential systems defined in [Formula: see text] and, using this result, we give a partial positive answer for the conjecture about the nonchaotic dynamical behavior of quadratic three-dimensional differential systems having a symmetric Jacobian matrix. The algebraic criterion presented here is proved using some ideas from the Darboux theory of integrability, such as the existence of invariant algebraic surfaces and Darboux invariants, and is quite general, hence it can be used to study the nonchaotic behavior of other types of differential systems defined in [Formula: see text], including polynomial differential systems of any degree having (or not having) a symmetric Jacobian matrix.


2016 ◽  
Vol 26 (11) ◽  
pp. 1650188 ◽  
Author(s):  
Joan C. Artés ◽  
Regilene D. S. Oliveira ◽  
Alex C. Rezende

The study of planar quadratic differential systems is very important not only because they appear in many areas of applied mathematics but due to their richness in structure, stability and questions concerning limit cycles, for example. Even though many papers have been written on this class of systems, a complete understanding of this family is still missing. Classical problems, and in particular Hilbert’s 16th problem [Hilbert, 1900, 1902], are still open for this family. In this article, we make a global study of the family [Formula: see text] of all real quadratic polynomial differential systems which have a finite semi-elemental triple saddle (triple saddle with exactly one zero eigenvalue). This family modulo the action of the affine group and time homotheties is three-dimensional and we give its bifurcation diagram with respect to a normal form, in the three-dimensional real space of the parameters of this normal form. This bifurcation diagram yields 27 phase portraits for systems in [Formula: see text] counting phase portraits with and without limit cycles. Algebraic invariants are used to construct the bifurcation set and we present the phase portraits on the Poincaré disk. The bifurcation set is not just algebraic due to the presence of a surface found numerically, whose points correspond to connections of separatrices.


2015 ◽  
Vol 25 (03) ◽  
pp. 1530009 ◽  
Author(s):  
Joan C. Artés ◽  
Alex C. Rezende ◽  
Regilene D. S. Oliveira

Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular, Hilbert's 16th problem [Hilbert, 1900, 1902], are still open for this family. Our goal is to make a global study of the family QsnSN of all real quadratic polynomial differential systems which have a finite semi-elemental saddle-node and an infinite saddle-node formed by the collision of two infinite singular points. This family can be divided into three different subfamilies, all of them with the finite saddle-node in the origin of the plane with the eigenvectors on the axes and with the eigenvector associated with the zero eigenvalue on the horizontal axis and (A) with the infinite saddle-node in the horizontal axis, (B) with the infinite saddle-node in the vertical axis and (C) with the infinite saddle-node in the bisector of the first and third quadrants. These three subfamilies modulo the action of the affine group and time homotheties are three-dimensional and we give the bifurcation diagram of their closure with respect to specific normal forms, in the three-dimensional real projective space. The subfamilies (A) and (B) have already been studied [Artés et al., 2013b] and in this paper we provide the complete study of the geometry of the last family (C). The bifurcation diagram for the subfamily (C) yields 371 topologically distinct phase portraits with and without limit cycles for systems in the closure [Formula: see text] within the representatives of QsnSN(C) given by a chosen normal form. Algebraic invariants are used to construct the bifurcation set. The phase portraits are represented on the Poincaré disk. The bifurcation set of [Formula: see text] is not only algebraic due to the presence of some surfaces found numerically. All points in these surfaces correspond to either connections of separatrices, or the presence of a double limit cycle.


2010 ◽  
Vol 20 (10) ◽  
pp. 3137-3155 ◽  
Author(s):  
JAUME LLIBRE ◽  
MARCELO MESSIAS ◽  
PAULO RICARDO DA SILVA

In this paper by using the Poincaré compactification of ℝ3 we describe the global dynamics of the Lorenz system [Formula: see text] having some invariant algebraic surfaces. Of course (x, y, z) ∈ ℝ3 are the state variables and (s, r, b) ∈ ℝ3 are the parameters. For six sets of the parameter values, the Lorenz system has invariant algebraic surfaces. For these six sets, we provide the global phase portrait of the system in the Poincaré ball (i.e. in the compactification of ℝ3 with the sphere 𝕊2 of the infinity).


2013 ◽  
Vol 23 (08) ◽  
pp. 1350140 ◽  
Author(s):  
JOAN C. ARTÉS ◽  
ALEX C. REZENDE ◽  
REGILENE D. S. OLIVEIRA

Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular, Hilbert's 16th problem [Hilbert, 1900, 1902], are still open for this family. In this article, we make a global study of the family [Formula: see text] of all real quadratic polynomial differential systems which have a semi-elemental triple node (triple node with exactly one zero eigenvalue). This family modulo the action of the affine group and time homotheties is three-dimensional and we give its bifurcation diagram with respect to a normal form, in the three-dimensional real space of the parameters of this form. This bifurcation diagram yields 28 phase portraits for systems in [Formula: see text] counting phase portraits with and without limit cycles. Algebraic invariants are used to construct the bifurcation set. The phase portraits are represented on the Poincaré disk. The bifurcation set is not only algebraic due to the presence of a surface found numerically. All points in this surface correspond to connections of separatrices.


2014 ◽  
Vol 24 (03) ◽  
pp. 1450036 ◽  
Author(s):  
Chaoxiong Du ◽  
Qinlong Wang ◽  
Wentao Huang

We study the Hopf bifurcation for a class of three-dimensional cubic Kolmogorov model by making use of our method (i.e. singular values method). We show that the positive singular point (1, 1, 1) of an investigated model can become a fine focus of 5 order, and moreover, it can bifurcate five small limit cycles under certain coefficients with disturbed condition. In terms of three-dimensional cubic Kolmogorov model, published references can hardly be seen, and our results are new. At the same time, it is worth pointing out that our method is valid to study the Hopf bifurcation problem for other three-dimensional polynomial differential systems.


2007 ◽  
Vol 79 (4) ◽  
pp. 563-575 ◽  
Author(s):  
Jaume Llibre ◽  
Marcelo Messias

In this paper we study a class of symmetric polynomial differential systems in R³, which has a set of parallel invariant straight lines, forming degenerate heteroclinic cycles, which have their two singular endpoints at infinity. The global study near infinity is performed using the Poincaré compactification. We prove that for all n <FONT FACE=Symbol>Î</FONT> N there is epsilonn > 0 such that for 0 < epsilon < epsilonn the system has at least n large amplitude periodic orbits bifurcating from the heteroclinic loop formed by the two invariant straight lines closest to the x-axis, one contained in the half-space y > 0 and the other in y < 0.


Sign in / Sign up

Export Citation Format

Share Document