global phase portrait
Recently Published Documents


TOTAL DOCUMENTS

13
(FIVE YEARS 4)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
Vol 31 (06) ◽  
pp. 2150094
Author(s):  
Jaume Llibre ◽  
Bruno D. Lopes ◽  
Paulo R. da Silva

In this paper, we characterize the global phase portrait of the Riccati quadratic polynomial differential system [Formula: see text] with [Formula: see text], [Formula: see text] nonzero (otherwise the system is a Bernoulli differential system), [Formula: see text] (otherwise the system is a Liénard differential system), [Formula: see text] a polynomial of degree at most [Formula: see text], [Formula: see text] and [Formula: see text] polynomials of degree at most 2, and the maximum of the degrees of [Formula: see text] and [Formula: see text] is 2. We give the complete description of the phase portraits in the Poincaré disk (i.e. in the compactification of [Formula: see text] adding the circle [Formula: see text] of the infinity) modulo topological equivalence.


Author(s):  
Jorge Rodríguez Contreras ◽  
Alberto Reyes Linero ◽  
Juliana Vargas Sánchez

The goal of this article is to conduct a global dynamics study of a linear multiparameter system (real parameters (a,b,c) in R^3); for this, we take the different changes that these parameters present. First, we find the different parametric surfaces in which the space is divided, where the stability of the critical point is defined; we then create a bifurcation diagram to classify the different bifurcations that appear in the system. Finally, we determine and classify the critical points at infinity, considering the canonical shape of the Poincaré sphere, and thus, obtain a global phase portrait of the multiparametric linear system.


2019 ◽  
Vol 24 (3) ◽  
pp. 372-384
Author(s):  
Klaus R. Schneider

We study the mathematical model of the point charge oscillator which has been derived by A. Beléndez et al. [2]. First we determine the global phase portrait of this model in the Poincaré disk. It consists of a family of closed orbits surrounding the unique finite equilibrium point and of a continuum of homoclinic orbits to the unique equilibrium point at infinity. Next we derive analytic expressions for the relationship between period (frequency) and amplitude. Further, we prove that the period increases monotone with the amplitude and derive an expression for its growth rate as the amplitude tends to infinity. Finally, we determine a relation between period and amplitude by means of the complete elliptic integral of the first kind K(k) and of the Jacobi elliptic function cn.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Feng Guo

In this paper, the global analysis of a Liénard equation with quadratic damping is studied. There are 22 different global phase portraits in the Poincaré disc. Every global phase portrait is given as well as the complete global bifurcation diagram. Firstly, the equilibria at finite and infinite of the Liénard system are discussed. The properties of the equilibria are studied. Then, the sufficient and necessary conditions of the system with closed orbits are obtained. The degenerate Bogdanov-Takens bifurcation is studied and the bifurcation diagrams of the system are given.


2017 ◽  
Vol 22 (4) ◽  
pp. 1273-1293 ◽  
Author(s):  
Hebai Chen ◽  
◽  
Xingwu Chen ◽  
Jianhua Xie ◽  
◽  
...  

2012 ◽  
Vol 22 (06) ◽  
pp. 1250154 ◽  
Author(s):  
JAUME LLIBRE ◽  
MARCELO MESSIAS ◽  
PAULO RICARDO DA SILVA

In this paper, we perform a global analysis of the dynamics of the Chen system [Formula: see text] where (x, y, z) ∈ ℝ3 and (a, b, c) ∈ ℝ3. We give the complete description of its dynamics on the sphere at infinity. For six sets of the parameter values, the system has invariant algebraic surfaces. In these cases, we provide the global phase portrait of the Chen system and give a complete description of the α- and ω-limit sets of its orbits in the Poincaré ball, including its boundary 𝕊2, i.e. in the compactification of ℝ3 with the sphere 𝕊2 of infinity. Moreover, combining the analytical results obtained with an accurate numerical analysis, we prove the existence of a family with infinitely many heteroclinic orbits contained on invariant cylinders when the Chen system has a line of singularities and a first integral, which indicates the complicated dynamical behavior of the Chen system solutions even in the absence of chaotic dynamics.


2010 ◽  
Vol 20 (10) ◽  
pp. 3137-3155 ◽  
Author(s):  
JAUME LLIBRE ◽  
MARCELO MESSIAS ◽  
PAULO RICARDO DA SILVA

In this paper by using the Poincaré compactification of ℝ3 we describe the global dynamics of the Lorenz system [Formula: see text] having some invariant algebraic surfaces. Of course (x, y, z) ∈ ℝ3 are the state variables and (s, r, b) ∈ ℝ3 are the parameters. For six sets of the parameter values, the Lorenz system has invariant algebraic surfaces. For these six sets, we provide the global phase portrait of the system in the Poincaré ball (i.e. in the compactification of ℝ3 with the sphere 𝕊2 of the infinity).


2007 ◽  
Vol 17 (2) ◽  
pp. 309-329 ◽  
Author(s):  
Antonio Garijo ◽  
◽  
Armengol Gasull ◽  
Xavier Jarque ◽  
◽  
...  

Sign in / Sign up

Export Citation Format

Share Document