Limit Cycles for a Class of Piecewise Smooth Quadratic Differential Systems with Multiple Parameters

2016 ◽  
Vol 26 (10) ◽  
pp. 1650171 ◽  
Author(s):  
Xuekang Bo ◽  
Yun Tian

This paper considers a class of quadratic differential systems with an isochronous center under small piecewise smooth perturbations. Two perturbation parameters at different scales are included in the system. By using the first order Melnikov function, we obtain some new results on the number of small-amplitude limit cycles bifurcating around an isochronous center.

2016 ◽  
Vol 26 (07) ◽  
pp. 1650116 ◽  
Author(s):  
Shimin Li ◽  
Kuilin Wu

In this paper, a class of piecewise smooth quasi-homogeneous differential systems are considered. Using the first order Melnikov function derived in [Liu & Han, 2010], we obtain a lower bound of the maximum number of limit cycles which bifurcate from the periodic annulus of the center under polynomial perturbation. The results reveal that piecewise smooth quasi-homogeneous differential systems can bifurcate more limit cycles than the smooth systems.


2016 ◽  
Vol 26 (12) ◽  
pp. 1650204 ◽  
Author(s):  
Jihua Yang ◽  
Liqin Zhao

This paper deals with the limit cycle bifurcations for piecewise smooth Hamiltonian systems. By using the first order Melnikov function of piecewise near-Hamiltonian systems given in [Liu & Han, 2010], we give a lower bound and an upper bound of the number of limit cycles that bifurcate from the period annulus between the center and the generalized eye-figure loop up to the first order of Melnikov function.


2020 ◽  
Vol 30 (15) ◽  
pp. 2050230
Author(s):  
Jiaxin Wang ◽  
Liqin Zhao

In this paper, by using Picard–Fuchs equations and Chebyshev criterion, we study the bifurcation of limit cycles for degenerate quadratic Hamilton systems with polycycles [Formula: see text] or [Formula: see text] under the perturbations of piecewise smooth polynomials with degree [Formula: see text]. Roughly speaking, for [Formula: see text], a polycycle [Formula: see text] is cyclically ordered collection of [Formula: see text] saddles together with orbits connecting them in specified order. The discontinuity is on the line [Formula: see text]. If the first order Melnikov function is not equal to zero identically, it is proved that the upper bounds of the number of limit cycles bifurcating from each of the period annuli with the boundary [Formula: see text] and [Formula: see text] are respectively [Formula: see text] and [Formula: see text] (taking into account the multiplicity).


2017 ◽  
Vol 27 (05) ◽  
pp. 1750071 ◽  
Author(s):  
Feng Liang ◽  
Dechang Wang

In this paper, we suppose that a planar piecewise Hamiltonian system, with a straight line of separation, has a piecewise generalized homoclinic loop passing through a Saddle-Fold point, and assume that there exists a family of piecewise smooth periodic orbits near the loop. By studying the asymptotic expansion of the first order Melnikov function corresponding to the period annulus, we obtain the formulas of the first six coefficients in the expansion, based on which, we provide a lower bound for the maximal number of limit cycles bifurcated from the period annulus. As applications, two concrete systems are considered. Especially, the first one reveals that a quadratic piecewise Hamiltonian system can have five limit cycles near a generalized homoclinic loop under a quadratic piecewise smooth perturbation. Compared with the smooth case [Horozov & Iliev, 1994; Han et al., 1999], three more limit cycles are found.


2016 ◽  
Vol 2016 ◽  
pp. 1-11
Author(s):  
Ziguo Jiang

We study the number of limit cycles for the quadratic polynomial differential systemsx˙=-y+x2,y˙=x+xyhaving an isochronous center with continuous and discontinuous cubic polynomial perturbations. Using the averaging theory of first order, we obtain that 3 limit cycles bifurcate from the periodic orbits of the isochronous center with continuous perturbations and at least 7 limit cycles bifurcate from the periodic orbits of the isochronous center with discontinuous perturbations. Moreover, this work shows that the discontinuous systems have at least 4 more limit cycles surrounding the origin than the continuous ones.


2012 ◽  
Vol 22 (08) ◽  
pp. 1250203 ◽  
Author(s):  
JING SU ◽  
JUNMIN YANG ◽  
MAOAN HAN

As we know, Liénard system is an important model of nonlinear oscillators, which has been widely studied. In this paper, we study the Hopf bifurcation of an analytic Liénard system by perturbing a nilpotent center. We develop an efficient method to compute the coefficients bl appearing in the expansion of the first order Melnikov function by finding a set of equivalent quantities B2l+1 which are able to calculate directly and can be used to study the number of small-amplitude limit cycles of the system. As an application, we investigate some polynomial Liénard systems, obtaining a lower bound of the maximal number of limit cycles near a nilpotent center.


2016 ◽  
Vol 26 (01) ◽  
pp. 1650009 ◽  
Author(s):  
Lijuan Sheng

In this paper, we study the problem of limit cycle bifurcation in two piecewise polynomial systems of Liénard type with multiple parameters. Based on the developed Melnikov function theory, we obtain the maximum number of limit cycles of these two systems.


2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Meilan Cai ◽  
Maoan Han

In this paper, we consider the bifurcation problem of limit cycles for a class of piecewise smooth cubic systems separated by the straight line [Formula: see text]. Using the first order Melnikov function, we prove that at least [Formula: see text] limit cycles can bifurcate from an isochronous cubic center at the origin under perturbations of piecewise polynomials of degree [Formula: see text]. Further, the maximum number of limit cycles bifurcating from the center of the unperturbed system is at least [Formula: see text] if the origin is the unique singular point under perturbations.


2020 ◽  
Vol 30 (08) ◽  
pp. 2050115
Author(s):  
Jing Gao ◽  
Yulin Zhao

In this paper, we study a class of [Formula: see text]-equivariant planar polynomial differential systems [Formula: see text]. It is shown that for any [Formula: see text] there is a differential system of the above type having at least [Formula: see text] limit cycles. This is proved by estimating the number of zeros of the first-order Melnikov function.


2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Chunyu Zhu ◽  
Yun Tian

In this paper, we consider a nongeneric quadratic reversible system with piecewise polynomial perturbations. We use the expansion of the first order Melnikov function to obtain the maximal number of small-amplitude limit cycles produced by Hopf bifurcation in the perturbed systems.


Sign in / Sign up

Export Citation Format

Share Document