Limit Cycles from Hopf Bifurcation in Nongeneric Quadratic Reversible Systems with Piecewise Perturbations

2021 ◽  
Vol 31 (16) ◽  
Author(s):  
Chunyu Zhu ◽  
Yun Tian

In this paper, we consider a nongeneric quadratic reversible system with piecewise polynomial perturbations. We use the expansion of the first order Melnikov function to obtain the maximal number of small-amplitude limit cycles produced by Hopf bifurcation in the perturbed systems.

2012 ◽  
Vol 22 (08) ◽  
pp. 1250203 ◽  
Author(s):  
JING SU ◽  
JUNMIN YANG ◽  
MAOAN HAN

As we know, Liénard system is an important model of nonlinear oscillators, which has been widely studied. In this paper, we study the Hopf bifurcation of an analytic Liénard system by perturbing a nilpotent center. We develop an efficient method to compute the coefficients bl appearing in the expansion of the first order Melnikov function by finding a set of equivalent quantities B2l+1 which are able to calculate directly and can be used to study the number of small-amplitude limit cycles of the system. As an application, we investigate some polynomial Liénard systems, obtaining a lower bound of the maximal number of limit cycles near a nilpotent center.


2021 ◽  
Vol 31 (09) ◽  
pp. 2150123
Author(s):  
Xiaoyan Chen ◽  
Maoan Han

In this paper, we study Poincaré bifurcation of a class of piecewise polynomial systems, whose unperturbed system has a period annulus together with two invariant lines. The main concerns are the number of zeros of the first order Melnikov function and the estimation of the number of limit cycles which bifurcate from the period annulus under piecewise polynomial perturbations of degree [Formula: see text].


2018 ◽  
Vol 28 (02) ◽  
pp. 1850026
Author(s):  
Yuanyuan Liu ◽  
Feng Li ◽  
Pei Dang

We consider the bifurcation in a class of piecewise polynomial systems with piecewise polynomial perturbations. The corresponding unperturbed system is supposed to possess an elementary or nilpotent critical point. First, we present 17 cases of possible phase portraits and conditions with at least one nonsmooth periodic orbit for the unperturbed system. Then we focus on the two specific cases with two heteroclinic orbits and investigate the number of limit cycles near the loop by means of the first-order Melnikov function, respectively. Finally, we take a quartic piecewise system with quintic piecewise polynomial perturbation as an example and obtain that there can exist ten limit cycles near the heteroclinic loop.


2018 ◽  
Vol 28 (03) ◽  
pp. 1850038
Author(s):  
Marzieh Mousavi ◽  
Hamid R. Z. Zangeneh

In this paper, we study the asymptotic expansion of the first order Melnikov function near a 3-polycycle connecting a cusp (of order one or two) to two hyperbolic saddles for a near-Hamiltonian system in the plane. The formulas for the first coefficients of the expansion are given as well as the method of bifurcation of limit cycles. Then we use the results to study two Hamiltonian systems with this 3-polycycle and determine the number and distribution of limit cycles that can bifurcate from the perturbed systems. Moreover, a sharp upper bound for the number of limit cycles bifurcated from the whole periodic annulus is found when there is a cusp of order one.


2016 ◽  
Vol 26 (10) ◽  
pp. 1650171 ◽  
Author(s):  
Xuekang Bo ◽  
Yun Tian

This paper considers a class of quadratic differential systems with an isochronous center under small piecewise smooth perturbations. Two perturbation parameters at different scales are included in the system. By using the first order Melnikov function, we obtain some new results on the number of small-amplitude limit cycles bifurcating around an isochronous center.


2011 ◽  
Vol 21 (11) ◽  
pp. 3341-3357
Author(s):  
PEIPEI ZUO ◽  
MAOAN HAN

In this paper, by using qualitative analysis and the first-order Melnikov function method, we consider two kinds of polynomial systems, and study the Hopf bifurcation problem, obtaining the maximum number of limit cycles.


2016 ◽  
Vol 26 (12) ◽  
pp. 1650204 ◽  
Author(s):  
Jihua Yang ◽  
Liqin Zhao

This paper deals with the limit cycle bifurcations for piecewise smooth Hamiltonian systems. By using the first order Melnikov function of piecewise near-Hamiltonian systems given in [Liu & Han, 2010], we give a lower bound and an upper bound of the number of limit cycles that bifurcate from the period annulus between the center and the generalized eye-figure loop up to the first order of Melnikov function.


2012 ◽  
Vol 22 (12) ◽  
pp. 1250296 ◽  
Author(s):  
MAOAN HAN

In the study of the perturbation of Hamiltonian systems, the first order Melnikov functions play an important role. By finding its zeros, we can find limit cycles. By analyzing its analytical property, we can find its zeros. The main purpose of this article is to summarize some methods to find its zeros near a Hamiltonian value corresponding to an elementary center, nilpotent center or a homoclinic or heteroclinic loop with hyperbolic saddles or nilpotent critical points through the asymptotic expansions of the Melnikov function at these values. We present a series of results on the limit cycle bifurcation by using the first coefficients of the asymptotic expansions.


2020 ◽  
Vol 30 (15) ◽  
pp. 2050230
Author(s):  
Jiaxin Wang ◽  
Liqin Zhao

In this paper, by using Picard–Fuchs equations and Chebyshev criterion, we study the bifurcation of limit cycles for degenerate quadratic Hamilton systems with polycycles [Formula: see text] or [Formula: see text] under the perturbations of piecewise smooth polynomials with degree [Formula: see text]. Roughly speaking, for [Formula: see text], a polycycle [Formula: see text] is cyclically ordered collection of [Formula: see text] saddles together with orbits connecting them in specified order. The discontinuity is on the line [Formula: see text]. If the first order Melnikov function is not equal to zero identically, it is proved that the upper bounds of the number of limit cycles bifurcating from each of the period annuli with the boundary [Formula: see text] and [Formula: see text] are respectively [Formula: see text] and [Formula: see text] (taking into account the multiplicity).


2020 ◽  
Vol 30 (09) ◽  
pp. 2050126
Author(s):  
Li Zhang ◽  
Chenchen Wang ◽  
Zhaoping Hu

From [Han et al., 2009a] we know that the highest order of the nilpotent center of cubic Hamiltonian system is [Formula: see text]. In this paper, perturbing the Hamiltonian system which has a nilpotent center of order [Formula: see text] at the origin by cubic polynomials, we study the number of limit cycles of the corresponding cubic near-Hamiltonian systems near the origin. We prove that we can find seven and at most seven limit cycles near the origin by the first-order Melnikov function.


Sign in / Sign up

Export Citation Format

Share Document