scholarly journals Periodic Orbits Bifurcating from a Nonisolated Zero–Hopf Equilibrium of Three-Dimensional Differential Systems Revisited

2018 ◽  
Vol 28 (05) ◽  
pp. 1850058 ◽  
Author(s):  
Murilo R. Cândido ◽  
Jaume Llibre

In this paper, we study the periodic solutions bifurcating from a nonisolated zero–Hopf equilibrium in a polynomial differential system of degree two in [Formula: see text]. More specifically, we use recent results of averaging theory to improve the conditions for the existence of one or two periodic solutions bifurcating from such a zero–Hopf equilibrium. This new result is applied for studying the periodic solutions of differential systems in [Formula: see text] having [Formula: see text]-scroll chaotic attractors.

Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1137
Author(s):  
Maoan Han ◽  
Jaume Llibre ◽  
Yun Tian

Here we study 3-dimensional Lotka–Volterra systems. It is known that some of these differential systems can have at least four periodic orbits bifurcating from one of their equilibrium points. Here we prove that there are some of these differential systems exhibiting at least six periodic orbits bifurcating from one of their equilibrium points. We remark that these systems with such six periodic orbits are non-competitive Lotka–Volterra systems. The proof is done using the algorithm that we provide for computing the periodic solutions that bifurcate from a zero-Hopf equilibrium based in the averaging theory of third order. This algorithm can be applied to any differential system having a zero-Hopf equilibrium.


2020 ◽  
Vol 18 (1) ◽  
pp. 1164-1172
Author(s):  
Jian Zhou ◽  
Shiyin Zhao

Abstract In this paper, firstly, we study the structural form of reflective integral for a given system. Then the sufficient conditions are obtained to ensure there exists the reflective integral with these structured form for such system. Secondly, we discuss the necessary conditions for the equivalence of such systems and a general three-dimensional differential system. And then, we apply the obtained results to the study of the behavior of their periodic solutions when such systems are periodic systems in t.


2019 ◽  
Vol 2019 ◽  
pp. 1-6
Author(s):  
Jian Zhou ◽  
Shiyin Zhao

The structure of the generalized reflective function of three-degree polynomial differential systems is considered in this paper. The generated results are used for discussing the existence of periodic solutions of these systems.


2013 ◽  
Vol 23 (03) ◽  
pp. 1350048 ◽  
Author(s):  
JAUME LLIBRE ◽  
CLAUDIA VALLS

We study the number of limit cycles of the polynomial differential systems of the form [Formula: see text] where g1(x) = εg11(x) + ε2g12(x) + ε3g13(x), g2(x) = εg21(x) + ε2g22(x) + ε3g23(x) and f(x) = εf1(x) + ε2 f2(x) + ε3 f3(x) where g1i, g2i, f2i have degree k, m and n respectively for each i = 1, 2, 3, and ε is a small parameter. Note that when g1(x) = 0 we obtain the generalized Liénard polynomial differential systems. We provide an upper bound of the maximum number of limit cycles that the previous differential system can have bifurcating from the periodic orbits of the linear center ẋ = y, ẏ = -x using the averaging theory of third order.


2015 ◽  
Vol 25 (10) ◽  
pp. 1550131 ◽  
Author(s):  
Fangfang Jiang ◽  
Junping Shi ◽  
Jitao Sun

In this paper, we investigate the number of limit cycles for a class of discontinuous planar differential systems with multiple sectors separated by many rays originating from the origin. In each sector, it is a smooth generalized Liénard polynomial differential system x′ = -y + g1(x) + f1(x)y and y′ = x + g2(x) + f2(x)y, where fi(x) and gi(x) for i = 1, 2 are polynomials of variable x with any given degree. By the averaging theory of first-order for discontinuous differential systems, we provide the criteria on the maximum number of medium amplitude limit cycles for the discontinuous generalized Liénard polynomial differential systems. The upper bound for the number of medium amplitude limit cycles can be attained by specific examples.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Renato Colucci ◽  
Daniel Nuñez

We study the existence of periodic orbit for a differential system describing the effects of indirect predation over two preys. Besides discussing a generalized version of the model, we present some remarks and numerical experiments for the nonautonomous version of the two models.


2015 ◽  
Vol 25 (11) ◽  
pp. 1550144 ◽  
Author(s):  
Jaume Llibre ◽  
Douglas D. Novaes ◽  
Marco A. Teixeira

We study a class of discontinuous piecewise linear differential systems with two zones separated by the straight line x = 0. In x > 0, we have a linear saddle with its equilibrium point living in x > 0, and in x < 0 we have a linear differential center. Let p be the equilibrium point of this linear center, when p lives in x < 0, we say that it is real, and when p lives in x > 0 we say that it is virtual. We assume that this discontinuous piecewise linear differential system formed by the center and the saddle has a center q surrounded by periodic orbits ending in a homoclinic orbit of the saddle, independent if p is real, virtual or p is in x = 0. Note that q = p if p is real or p is in x = 0. We perturb these three classes of systems, according to the position of p, inside the class of all discontinuous piecewise linear differential systems with two zones separated by x = 0. Let N be the maximum number of limit cycles which can bifurcate from the periodic solutions of the center q with these perturbations. Our main results show that N = 2 when p is on x = 0, and N ≥ 2 when p is a real or virtual center. Furthermore, when p is a real center we found an example satisfying N ≥ 3.


Author(s):  
Jaume Llibre ◽  
Xiang Zhang

AbstractWe provide sufficient conditions for the non-existence, existence and uniqueness of limit cycles surrounding a focus of a quadratic polynomial differential system in the plane.


Author(s):  
Jaume Llibre ◽  
Clàudia Valls

We study the number of limit cycles of polynomial differential systems of the form where g 1 , f 1 , g 2 and f 2 are polynomials of a given degree. Note that when g 1 ( x )= f 1 ( x )=0, we obtain the generalized polynomial Liénard differential systems. We provide an accurate upper bound of the maximum number of limit cycles that the above system can have bifurcating from the periodic orbits of the linear centre , using the averaging theory of first and second order.


2020 ◽  
Vol 18 (01) ◽  
pp. 2150013
Author(s):  
Juan L. G. Guirao ◽  
Jaume Llibre ◽  
Juan A. Vera ◽  
Bruce A. Wade

We deal with non-autonomous Hamiltonian systems of one degree of freedom. For such differential systems, we compute analytically some of their periodic solutions, together with their type of stability. The tool for proving these results is the averaging theory of dynamical systems. We present some applications of these results.


Sign in / Sign up

Export Citation Format

Share Document