Linear Li–Yorke Chaos in a Finite-Dimensional Space with Weak Topology

2021 ◽  
Vol 31 (14) ◽  
Author(s):  
Xu Zhang ◽  
Guanrong Chen

It is well known that a finite-dimensional linear system cannot be chaotic. In this article, by introducing a weak topology into a two-dimensional Euclidean space, it shows that Li–Yorke chaos can be generated by a linear map, where the weak topology is induced by a linear functional. Some examples of linear systems are presented, some are chaotic while some others regular. Consequently, several open problems are posted.

2003 ◽  
Vol 46 (2) ◽  
pp. 421-433 ◽  
Author(s):  
David W. Kribs

AbstractWe show that the representations of the Cuntz $C^*$-algebras $\mathcal{O}_n$ which arise in wavelet analysis and dilation theory can be classified through a simple analysis of completely positive maps on finite-dimensional space. Based on this analysis, we find an application in quantum information theory; namely, a structure theorem for the fixed-point set of a unital quantum channel. We also include some open problems motivated by this work.AMS 2000 Mathematics subject classification: Primary 46L45; 47A20; 46L60; 42C40; 81P15


Author(s):  
Karen E. Clark ◽  
Graeme W. Milton

The effective conductivity tensor σ*of a two-dimensional polycrystalline material depends on the conductivity tensor σ0of the pure crystal from which the polycrystal is constructed and on the geometrical configuration of grains in the polycrystal, represented by a rotation fieldR(x) giving the orientation of the crystal at each pointx.Here it is established that the dependence of σ*on σ0in any polycrystal, with R (x) held fixed, can be mimicked exactly by a polycrystal constructed by sequential lamination. It is first shown that the effective conductivity function is perturbed only slightly if we truncate the Hilbert space of fields in the polycrystal to a finitedimensional space. Then the structure of this finite-dimensional space of fields is shown to be isomorphic to the structure of the finite-dimensional space of fields associated with the sequential laminate. In particular, there is an operation which corresponds to peeling away the layers in the sequential laminate and successively reducing the dimension of the space of fields.


1999 ◽  
Vol 6 (4) ◽  
pp. 323-334
Author(s):  
A. Kharazishvili

Abstract We give a characterization of all those groups of isometric transformations of a finite-dimensional Euclidean space, for which an analogue of the classical Vitali theorem [Sul problema della misura dei gruppi di punti di una retta, 1905] holds true. This characterization is formulated in purely geometrical terms.


Author(s):  
J. F. C. Kingman

1. A type of problem which frequently occurs in probability theory and statistics can be formulated in the following way. We are given real-valued functions f(x), gi(x) (i = 1, 2, …, k) on a space (typically finite-dimensional Euclidean space). Then the problem is to set bounds for Ef(X), where X is a random variable taking values in , about which all we know is the values of Egi(X). For example, we might wish to set bounds for P(X > a), where X is a real random variable with some of its moments given.


2005 ◽  
Vol 02 (03) ◽  
pp. 251-258
Author(s):  
HANLIN HE ◽  
QIAN WANG ◽  
XIAOXIN LIAO

The dual formulation of the maximal-minimal problem for an objective function of the error response to a fixed input in the continuous-time systems is given by a result of Fenchel dual. This formulation probably changes the original problem in the infinite dimensional space into the maximal problem with some restrained conditions in the finite dimensional space, which can be researched by finite dimensional space theory. When the objective function is given by the norm of the error response, the maximum of the error response or minimum of the error response, the dual formulation for the problems of L1-optimal control, the minimum of maximal error response, and the minimal overshoot etc. can be obtained, which gives a method for studying these problems.


Author(s):  
Jay L. Adams ◽  
Robert J. Veillette ◽  
Tom T. Hartley

This paper applies the Rayleigh-Ritz method to approximating the Hankel singular values of fractional-order systems. The algorithm is presented, and estimates of the first ten Hankel singular values of G(s) = 1/(sq+1) for several values of q ∈ (0, 1] are given. The estimates are computed by restricting the operator domain to a finite-dimensional space. The Hankel-norm estimates are found to be within 15% of the actual values for all q ∈ (0, 1].


1997 ◽  
pp. 13-27
Author(s):  
Mikhail I. Kadets ◽  
Vladimir M. Kadets

2021 ◽  
Vol 58 ◽  
pp. 73-93
Author(s):  
V.N. Ushakov ◽  
A.V. Ushakov ◽  
O.A. Kuvshinov

The problem of getting close of a controlled system with a compact space in a finite-dimensional Euclidean space at a fixed time is studied. A method of constructing a solution to the problem is proposed which is based on the ideology of the maximum shift of the motion of the controlled system by the solvability set of the getting close problem.


1992 ◽  
Vol 29 (4) ◽  
pp. 921-931 ◽  
Author(s):  
Mohsen Pourahmadi

By using the alternating projection theorem of J. von Neumann, we obtain explicit formulae for the best linear interpolator and interpolation error of missing values of a stationary process. These are expressed in terms of multistep predictors and autoregressive parameters of the process. The key idea is to approximate the future by a finite-dimensional space.


Sign in / Sign up

Export Citation Format

Share Document