dual formulation
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 18)

H-INDEX

23
(FIVE YEARS 2)

Geophysics ◽  
2021 ◽  
pp. 1-81
Author(s):  
Gabrio Rizzuti ◽  
mathias louboutin ◽  
Rongrong Wang ◽  
Felix J. Herrmann

Many of the seismic inversion techniques currently proposed that focus on robustness with respect to the background model choice are not apt to large-scale 3D applications, and the methods that are computationally feasible for industrial problems, such as full waveform inversion, are notoriously limited by convergence stagnation and require adequate starting models. We propose a novel solution that is both scalable and less sensitive to starting models or inaccurate parameters (such as anisotropy) that are typically kept fixed during inversion. It is based on a dual reformulation of the classical wavefield reconstruction inversion, whose empirical robustness with respect to these issues is well documented in the literature. While the classical version is not suited to 3D, as it leverages expensive frequency-domain solvers for the wave equation, our proposal allows the deployment of state-of-the-art time-domain finite-difference methods, and is potentially mature for industrial-scale problems.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Ali Seraj

Abstract Brans-Dicke theory contains an additional propagating mode which causes homogeneous expansion and contraction of test bodies in transverse directions. This “breathing” mode is associated with novel memory effects in addition to those of general relativity. Standard tensor mode memories are related to a symmetry principle: they are determined by the balance equations corresponding to the BMS symmetries. In this paper, we show that the leading and subleading breathing memory effects are determined by the balance equations associated with the leading and “overleading” asymptotic symmetries of a dual formulation of the scalar field in terms of a two-form gauge field. The memory effect causes a transition in the vacuum of the dual gauge theory. These results highlight the significance of dual charges and the physical role of overleading asymptotic symmetries.


Author(s):  
Mark Robert Baker

In a recent publication, a procedure was developed which can be used to derive completely gauge invariant models from general Lagrangian densities with [Formula: see text] order of derivatives and [Formula: see text] rank of tensor potential. This procedure was then used to show that unique models follow for each order, namely classical electrodynamics for [Formula: see text] and linearized Gauss–Bonnet gravity for [Formula: see text]. In this paper, the nature of the connection between these two well-explored physical models is further investigated by means of an additional common property; a complete dual formulation. First, we give a review of Gauss–Bonnet gravity and the dual formulation of classical electrodynamics. The dual formulation of linearized Gauss–Bonnet gravity is then developed. It is shown that the dual formulation of linearized Gauss–Bonnet gravity is analogous to the homogenous half of Maxwell’s theory; both have equations of motion corresponding to the (second) Bianchi identity, built from the dual form of their respective field strength tensors. In order to have a dually symmetric counterpart analogous to the nonhomogenous half of Maxwell’s theory, the first invariant derived from the procedure in [Formula: see text] can be introduced. The complete gauge invariance of a model with respect to Noether’s first theorem, and not just the equation of motion, is a necessary condition for this dual formulation. We show that this result can be generalized to the higher spin gauge theories, where the spin-[Formula: see text] curvature tensors for all [Formula: see text] are the field strength tensors for each [Formula: see text]. These completely gauge invariant models correspond to the Maxwell-like higher spin gauge theories whose equations of motion have been well explored in the literature.


2020 ◽  
Vol 109 (11) ◽  
pp. 3386-3393
Author(s):  
Bashaier Mohammed Al-Kandari ◽  
Monerah H. Al-Soraj ◽  
Mohsen A. Hedaya

Entropy ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. 633
Author(s):  
Desmond A. Johnston ◽  
Ranasinghe P. K. C. M. Ranasinghe

A characteristic feature of the 3 d plaquette Ising model is its planar subsystem symmetry. The quantum version of this model has been shown to be related via a duality to the X-Cube model, which has been paradigmatic in the new and rapidly developing field of fractons. The relation between the 3 d plaquette Ising and the X-Cube model is similar to that between the 2 d quantum transverse spin Ising model and the Toric Code. Gauging the global symmetry in the case of the 2 d Ising model and considering the gauge invariant sector of the high temperature phase leads to the Toric Code, whereas gauging the subsystem symmetry of the 3 d quantum transverse spin plaquette Ising model leads to the X-Cube model. A non-standard dual formulation of the 3 d plaquette Ising model which utilises three flavours of spins has recently been discussed in the context of dualising the fracton-free sector of the X-Cube model. In this paper we investigate the classical spin version of this non-standard dual Hamiltonian and discuss its properties in relation to the more familiar Ashkin–Teller-like dual and further related dual formulations involving both link and vertex spins and non-Ising spins.


2020 ◽  
Vol 17 (03) ◽  
pp. 2050047
Author(s):  
Andrea Addazi ◽  
Antonino Marciano

Inspired by the low wave-length limit of topological M-theory, which re-constructs the theory of 3 + 1D gravity in the self-dual variables’ formulation, and by the realization that in Loop Quantum Gravity (LQG) the holonomy of a flat connection can be non-trivial if and only if a non-trivial (space-like) line defect is localized inside the loop, we argue that non-trivial gravitational holonomies can be put in correspondence with space-like M-branes. This suggests the existence of a new duality, which we call [Formula: see text] duality, interconnecting topological M-theory with LQG. We spell some arguments to show that fundamental S-strings are serious candidates to be considered in order to instantiate this correspondence to classes of LQG states. In particular, we consider the case of the holonomy flowers in LQG, and show that for this type of states the action of the Hamiltonian constraint, from the M-theory side, corresponds to a linear combination of appearance and disappearance of a SNS1-strings. Consequently, these processes can be reinterpreted, respectively, as enucleations or decays into open or closed strings.


Sign in / Sign up

Export Citation Format

Share Document