scholarly journals Validation and Calibration of Models for Reaction–Diffusion Systems

1998 ◽  
Vol 08 (06) ◽  
pp. 1163-1182 ◽  
Author(s):  
Rui Dilão ◽  
Joaquim Sainhas

Space and time scales are not independent in diffusion. In fact, numerical simulations show that different patterns are obtained when space and time steps (Δx and Δt) are varied independently. On the other hand, anisotropy effects due to the symmetries of the discretization lattice prevent the quantitative calibration of models. We introduce a new class of explicit difference methods for numerical integration of diffusion and reaction–diffusion equations, where the dependence on space and time scales occurs naturally. Numerical solutions approach the exact solution of the continuous diffusion equation for finite Δx and Δt, if the parameter γN=DΔt/(Δx)2 assumes a fixed constant value, where N is an odd positive integer parametrizing the algorithm. The error between the solutions of the discrete and the continuous equations goes to zero as (Δx)2(N+2) and the values of γN are dimension independent. With these new integration methods, anisotropy effects resulting from the finite differences are minimized, defining a standard for validation and calibration of numerical solutions of diffusion and reaction–diffusion equations. Comparison between numerical and analytical solutions of reaction–diffusion equations give global discretization errors of the order of 10-6 in the sup norm. Circular patterns of traveling waves have a maximum relative random deviation from the spherical symmetry of the order of 0.2%, and the standard deviation of the fluctuations around the mean circular wave front is of the order of 10-3.

2021 ◽  
Vol 63 ◽  
pp. 448-468
Author(s):  
Marianito Rodrigo

The Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) equation is one of the prototypical reaction–diffusion equations and is encountered in many areas, primarily in population dynamics. An important consideration for the phenomena modelled by diffusion equations is the length of the diffusive process. In this paper, three definitions of the critical time are given, and bounds are obtained by a careful construction of the upper and lower solutions. The comparison functions satisfy the nonlinear, but linearizable, partial differential equations of Fisher–KPP type. Results of the numerical simulations are displayed. Extensions to some classes of reaction–diffusion systems and an application to a spatially heterogeneous harvesting model are also presented. doi:10.1017/S1446181121000365


Author(s):  
Nicholas D. Alikakos

SynopsisIn §§1 and 2, we consider mainly a system of reaction-diffusion equations with general diffusion matrix and we establish the stabilization of all solutions at t →∞. The interest of this problem derives from two separate facts. First, the sets that are useful for localizing the asymptotics cease to be invariant as soon as the diffusion matrix is not a multiple of the identity. Second, the set of equilibria is connected. In §3, we establish uniform L§ bounds for the solutions of a class of parabolic systems. The unifying feature in the problems considered is the lack of any conventional maximum principles.


2021 ◽  
pp. 1-21
Author(s):  
MARIANITO R. RODRIGO

Abstract The Fisher–Kolmogorov–Petrovsky–Piskunov (Fisher–KPP) equation is one of the prototypical reaction–diffusion equations and is encountered in many areas, primarily in population dynamics. An important consideration for the phenomena modelled by diffusion equations is the length of the diffusive process. In this paper, three definitions of the critical time are given, and bounds are obtained by a careful construction of the upper and lower solutions. The comparison functions satisfy the nonlinear, but linearizable, partial differential equations of Fisher–KPP type. Results of the numerical simulations are displayed. Extensions to some classes of reaction–diffusion systems and an application to a spatially heterogeneous harvesting model are also presented.


Author(s):  
Matthias Liero ◽  
Alexander Mielke

We consider systems of reaction–diffusion equations as gradient systems with respect to an entropy functional and a dissipation metric given in terms of a so-called Onsager operator, which is a sum of a diffusion part of Wasserstein type and a reaction part. We provide methods for establishing geodesic λ -convexity of the entropy functional by purely differential methods, thus circumventing arguments from mass transportation. Finally, several examples, including a drift–diffusion system, provide a survey on the applicability of the theory.


2014 ◽  
Vol 20 (1) ◽  
pp. 55-76 ◽  
Author(s):  
Tom Froese ◽  
Nathaniel Virgo ◽  
Takashi Ikegami

Due to recent advances in synthetic biology and artificial life, the origin of life is currently a hot topic of research. We review the literature and argue that the two traditionally competing replicator-first and metabolism-first approaches are merging into one integrated theory of individuation and evolution. We contribute to the maturation of this more inclusive approach by highlighting some problematic assumptions that still lead to an ximpoverished conception of the phenomenon of life. In particular, we argue that the new consensus has so far failed to consider the relevance of intermediate time scales. We propose that an adequate theory of life must account for the fact that all living beings are situated in at least four distinct time scales, which are typically associated with metabolism, motility, development, and evolution. In this view, self-movement, adaptive behavior, and morphological changes could have already been present at the origin of life. In order to illustrate this possibility, we analyze a minimal model of lifelike phenomena, namely, of precarious, individuated, dissipative structures that can be found in simple reaction-diffusion systems. Based on our analysis, we suggest that processes on intermediate time scales could have already been operative in prebiotic systems. They may have facilitated and constrained changes occurring in the faster- and slower-paced time scales of chemical self-individuation and evolution by natural selection, respectively.


Sign in / Sign up

Export Citation Format

Share Document