scholarly journals ON DIFFUSION DRIVEN OSCILLATIONS IN COUPLED DYNAMICAL SYSTEMS

1999 ◽  
Vol 09 (04) ◽  
pp. 629-644 ◽  
Author(s):  
ALEXANDER POGROMSKY ◽  
TORKEL GLAD ◽  
HENK NIJMEIJER

The paper deals with the problem of destabilization of diffusively coupled identical systems. Following a question of Smale [1976], it is shown that globally asymptotically stable systems being diffusively coupled, may exhibit oscillatory behavior. It is shown that if the diffusive medium consists of hyperbolically nonminimum phase systems and the diffusive factors exceed some threshold value, the origin of the overall system undergoes a Poincaré–Andronov–Hopf bifurcation resulting in oscillatory behavior.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jianguo Ren ◽  
Yonghong Xu

A new computer virus propagation model with delay and incomplete antivirus ability is formulated and its global dynamics is analyzed. The existence and stability of the equilibria are investigated by resorting to the threshold valueR0. By analysis, it is found that the model may undergo a Hopf bifurcation induced by the delay. Correspondingly, the critical value of the Hopf bifurcation is obtained. Using Lyapunov functional approach, it is proved that, under suitable conditions, the unique virus-free equilibrium is globally asymptotically stable ifR0<1, whereas the virus equilibrium is globally asymptotically stable ifR0>1. Numerical examples are presented to illustrate possible behavioral scenarios of the mode.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yakui Xue ◽  
Tiantian Li

We study a delayed SIR epidemic model and get the threshold value which determines the global dynamics and outcome of the disease. First of all, for anyτ, we show that the disease-free equilibrium is globally asymptotically stable; whenR0<1, the disease will die out. Directly afterwards, we prove that the endemic equilibrium is locally asymptotically stable for anyτ=0; whenR0>1, the disease will persist. However, for anyτ≠0, the existence conditions for Hopf bifurcations at the endemic equilibrium are obtained. Besides, we compare the delayed SIR epidemic model with nonlinear incidence rate to the one with bilinear incidence rate. At last, numerical simulations are performed to illustrate and verify the conclusions.


Sign in / Sign up

Export Citation Format

Share Document