scholarly journals Stability and Bifurcation of a Computer Virus Propagation Model with Delay and Incomplete Antivirus Ability

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jianguo Ren ◽  
Yonghong Xu

A new computer virus propagation model with delay and incomplete antivirus ability is formulated and its global dynamics is analyzed. The existence and stability of the equilibria are investigated by resorting to the threshold valueR0. By analysis, it is found that the model may undergo a Hopf bifurcation induced by the delay. Correspondingly, the critical value of the Hopf bifurcation is obtained. Using Lyapunov functional approach, it is proved that, under suitable conditions, the unique virus-free equilibrium is globally asymptotically stable ifR0<1, whereas the virus equilibrium is globally asymptotically stable ifR0>1. Numerical examples are presented to illustrate possible behavioral scenarios of the mode.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Chunming Zhang ◽  
Tianliang Feng ◽  
Yun Zhao ◽  
Guifeng Jiang

Based on complex network, this paper proposes a novel computer virus propagation model which is motivated by the traditional SEIRQ model. A systematic analysis of this new model shows that the virus-free equilibrium is globally asymptotically stable when its basic reproduction is less than one, and the viral equilibrium is globally attractive when the basic reproduction is greater than one. Some numerical simulations are finally given to illustrate the main results, implying that these results are applicable to depict the dynamics of virus propagation.


2016 ◽  
Vol 30 (28n29) ◽  
pp. 1640009 ◽  
Author(s):  
Yunxian Dai ◽  
Yiping Lin ◽  
Huitao Zhao ◽  
Chaudry Masood Khalique

In this paper, a delayed computer virus propagation model with a saturation incidence rate and a time delay describing temporary immune period is proposed and its dynamical behaviors are studied. The threshold value [Formula: see text] is given to determine whether the virus dies out completely. By comparison arguments and iteration technique, sufficient conditions are obtained for the global asymptotic stabilities of the virus-free equilibrium and the virus equilibrium. Taking the delay as a parameter, local Hopf bifurcations are demonstrated. Furthermore, the direction of Hopf bifurcation and the stabilities of the bifurcating periodic solutions are determined by the normal form theory and the center manifold theorem for functional differential equations (FDEs). Finally, numerical simulations are carried out to illustrate the main theoretical results.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Jianguo Ren ◽  
Yonghong Xu ◽  
Yongchang Zhang ◽  
Yongquan Dong ◽  
Guosheng Hao

By considering the varying latency period of computer virus, we propose a novel model for computer virus propagation in network. Under this model, we give the threshold value determining whether or not the virus finally dies out, and study the local stability of the virus-free and virus equilibrium. It is found that the model may undergo a Hopf bifurcation. Next, we use different methods to prove the global asymptotic stability of the equilibria: the virus-free equilibrium by using the direct Lyapunov method and virus equilibrium by using a geometric approach. Finally, some numerical examples are given to support our conclusions.


2020 ◽  
Vol 36 (4) ◽  
pp. 295-304 ◽  
Author(s):  
Quang A Dang ◽  
Manh Tuan Hoang ◽  
Dinh Hung Tran

A computer virus propagation model with feedback controls is first proposed and investigated. We show that the control variables do not influence on the global stability of the original differential model, they only alter the position of the unique viral equilibrium. The mathematical analyses and numerical simulations show that this equilibrium can be completely eliminated, namely, moved to the origin of coordinates if suitable values of the control variables are chosen. In the other words, the control variables are effective in the prevention of viruses in computer systems. Some numerical simulations are presented to demonstrate the validity of the obtained theoretical results.   


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Qingyi Zhu ◽  
Chen Cen

In reality, some computers have specific security classification. For the sake of safety and cost, the security level of computers will be upgraded with increasing of threats in networks. Here we assume that there exists a threshold value which determines when countermeasures should be taken to level up the security of a fraction of computers with low security level. And in some specific realistic environments the propagation network can be regarded as fully interconnected. Inspired by these facts, this paper presents a novel computer virus dynamics model considering the impact brought by security classification in full interconnection network. By using the theory of dynamic stability, the existence of equilibria and stability conditions is analysed and proved. And the above optimal threshold value is given analytically. Then, some numerical experiments are made to justify the model. Besides, some discussions and antivirus measures are given.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Zizhen Zhang ◽  
Limin Song

A four-compartment computer virus propagation model with two delays and graded infection rate is investigated in this paper. The critical values where a Hopf bifurcation occurs are obtained by analyzing the distribution of eigenvalues of the corresponding characteristic equation. In succession, direction and stability of the Hopf bifurcation when the two delays are not equal are determined by using normal form theory and center manifold theorem. Finally, some numerical simulations are also carried out to justify the obtained theoretical results.


2017 ◽  
Vol 2017 ◽  
pp. 1-17
Author(s):  
Zizhen Zhang ◽  
Yougang Wang ◽  
Dianjie Bi ◽  
Luca Guerrini

A further generalization of an SEIQRS-V (susceptible-exposed-infectious-quarantined-recovered-susceptible with vaccination) computer virus propagation model is the main topic of the present paper. This paper specifically analyzes effects on the asymptotic dynamics of the computer virus propagation model when two time delays are introduced. Sufficient conditions for the asymptotic stability and existence of the Hopf bifurcation are established by regarding different combination of the two delays as the bifurcation parameter. Moreover, explicit formulas that determine the stability, direction, and period of the bifurcating periodic solutions are obtained with the help of the normal form theory and center manifold theorem. Finally, numerical simulations are employed for supporting the obtained analytical results.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zizhen Zhang ◽  
Dianjie Bi

A delayed SLB computer virus propagation model with infectivity in latent period is proposed in this paper. We establish sufficient conditions for local stability of the positive equilibrium and existence of Hopf bifurcation by analyzing distribution of the roots of the associated characteristic equation and applying the Hopf bifurcation theorem. Furthermore, properties of the Hopf bifurcation are determined by using the normal form theory and the center manifold theorem. Finally, numerical simulations supporting the theoretical analysis are carried out.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Yakui Xue ◽  
Tiantian Li

We study a delayed SIR epidemic model and get the threshold value which determines the global dynamics and outcome of the disease. First of all, for anyτ, we show that the disease-free equilibrium is globally asymptotically stable; whenR0<1, the disease will die out. Directly afterwards, we prove that the endemic equilibrium is locally asymptotically stable for anyτ=0; whenR0>1, the disease will persist. However, for anyτ≠0, the existence conditions for Hopf bifurcations at the endemic equilibrium are obtained. Besides, we compare the delayed SIR epidemic model with nonlinear incidence rate to the one with bilinear incidence rate. At last, numerical simulations are performed to illustrate and verify the conclusions.


Sign in / Sign up

Export Citation Format

Share Document