KNOWLEDGE ENGINEERING OF A MONITORING AND CONTROL DECISION SUPPORT SYSTEM

Author(s):  
CHRISTINE WAICHI CHAN ◽  
WEERAPONG KRITPIPHAT ◽  
PAITOON TONTIWACHWUTHIKUL

This paper presents the Object-Oriented Knowledge Engineering (OOKE) methodology and its application in developing an expert system. OOKE is an expert system development methodology which incorporates the conceptual modelling tool of Inferential Modelling Technique into the analysis model of the Object-Oriented Software Engineering methodology. It was applied to develop a supervisory and decision support system for monitor and control of a water distribution system called the Water Advisor. The expertise, heuristics and reasoning knowledge of experts were acquired and then formulated in a model building process using the OOKE into a conceptual model which became the basis for a prototype expert system.

Author(s):  
R. A. Malairajan ◽  
K. Ganesh ◽  
M. Punnniyamoorthy ◽  
S. P. Anbuudayasankar

In today’s highly competitive and demanding environment, the pressure on both public and private organizations is to achieve a better way to deliver values to end customers. There has been a growing recognition that the two goals, cost reduction and customer service are achieved through Logistics and Supply Chain Management (SCM). Transportation of goods continues an important part of in-bound as well as outbound logistics of Supply Chain Management (SCM). Efficient distribution of goods and services is of great importance in today’s competitive market, because transportation constitutes a considerable portion of the purchase price of most products or services. Vehicle routing is considered as an important resource in a distribution logistics management system. Effective plan and control of vehicle operation can significantly reduce the cost of physical distribution system. To overcome the challenges of changing environment, the scheme of vehicle control of a physical distribution system should be dynamic. Thus India has become the top milk producing country in the world. This study addresses the vehicle routing aspect of distribution logistics in Sangam dairy supply chain of Guntur district in Andhra Pradesh. The problem is viewed as Vehicle Routing Problem with Backhauls (VRPB) and a mathematical model is developed with the consideration of various practical constraints. Moreover, a decision support system is developed for dynamic VRPB, which would help the manager in making operational and tactical decisions.


2018 ◽  
Vol 11 (1) ◽  
pp. 119-123 ◽  
Author(s):  
Meenakshi Malik ◽  
Mukesh Sehgal ◽  
A.K. Kanojia ◽  
R. V. Singh

2015 ◽  
Author(s):  
Νικόλαος Κατσιώτης

Στην παρούσα Διδακτορική Διατριβή παρουσιάζεται η διερεύνηση των δυνατοτήτων συμβολής μεθόδων μη-καταστρεπτικού ελέγχου στη διάγνωση και στον έλεγχο ποιότητας δομικών υλικών με έμφαση στην Αειφόρο Κατασκευή. Ως προς το παραπάνω σκοπό, πραγματοποιήθηκε εκτενής μελέτη των υπό έρευνα δομικών υλικών (δοκιμίων σκυροδεμάτων 5 συνθέσεων, έκαστη σύνθεση αποτελούμενη από διαφορετικό τύπο, ποιότητα και κατηγορία αντοχών του περιεχόμενου τσιμέντου) μέσω τόσο συμβατικών/παραδοσιακών (καταστρεπτικών) τεχνικών ανάλυσης όσο και καινοτόμων μη-καταστρεπτικών τεχνικών χαρακτηρισμού.Η μέθοδος που αναπτύχθηκε στα πλαίσια της παρούσας Διδακτορικής Διατριβής αφορά την συνδυαστική και συνεργατική εφαρμογή των μη-καταστρεπτικών τεχνικών της Μικροσκοπίας Οπτικών Ινών και της Ψηφιακής Επεξεργασίας Εικόνας. Περισσότερο συγκεκριμένα, παρασκευάσθηκαν δοκίμια σκυροδεμάτων στον ξυλότυπο (“καλούπι”) των οποίων είχε προσαρμοστεί κατάλληλο πλαίσιο (“παράθυρο”) παρατήρησης και λήψης εικόνων μέσω του οποίου εφαρμόστηκε Μικροσκοπία Οπτικών Ινών σε τακτά διαστήματα πραγματικού χρόνου (“real-time”) κατά την διάρκεια της τοποθέτησης/σκυροδέτησης αυτών. Εν συνεχεία, οι εικόνες υφής αυτές επεξεργάστηκαν κατάλληλα μέσω αλγορίθμου Ψηφιακής Επεξεργασίας Εικόνας (ο οποίος αναπτύχθηκε και αριστοποιήθηκε για τις ανάγκες της συγκεκριμένης Έρευνας και εφαρμογής) σε υπολογιστικό περιβάλλον MatLab®, και εξήχθησαν ποσοτικές πληροφορίες χαρακτηρισμού της δεδομένης εικόνας ανά χρονική στιγμή λήψης αυτής.Τα πειραματικά αποτελέσματα αυτά τροφοδοτήθηκαν αυτομάτως (και σε πραγματικό χρόνο - “real-time”) σε κατάλληλη πληροφοριακή γνωσιακή βάση δεδομένων, η οποία αποτέλεσε το έναυσμα για περαιτέρω αξιοποίηση των περιεχόμενων πληροφοριών, υπό την μορφή εύρεσης και έκφρασης κατάλληλου μαθηματικού συσχετισμού (“correlation”). Εν συνεχεία και βάσει του αναπτυχθέντος ημιεμπειρικού μαθηματικού μοντέλου, έλαβε χώρα μετάβαση σε έμπειρο σύστημα υποστήριξης απόφασης (“expert system”), ικανό να ανταποκρίνεται στις ανάγκες της Κατασκευής (σε πραγματικό τόπο, χρόνο και κλίμακα).Στα Συμπεράσματα της παρούσας Διδακτορικής Διατριβής συμπεριλαμβάνεται η επιτυχής συνδυαστική αξιοποίηση μη-καταστρεπτικών τεχνικών Μικροσκοπίας Οπτικών Ινών και Ψηφιακής Επεξεργασίας Εικόνας ως προς την λήψη αντιπροσωπευτικών επιφανειακών εικόνων υφής/μικροδομής (“image patterns”) σε ορισμένες χρονικές στιγμές αμέσως μετά την έναρξη της σκυροδέτησης (αρχή,+ 5, +10, +15, +20, +25, +30, +40, +50, 60λεπτά). Οι ληφθείσες ψηφιακά επεξεργασμένες εικόνες μικροδομής συσχετίστηκαν (μέσω εκτεταμένου προγράμματος γραμμικών παλινδρομήσεων) με τις τελικές μηχανικές αντοχές των παραχθέντων σκυροδεμάτων και συμπεραίνεται η εντονότερη βαρύτητα/σχέση των μορφολογικών παραμέτρων του “κεντροειδούς” και του “αριθμού Euler” (καθόλες τις χρονικές στιγμές), σε μεγέθυνση 25x και όριο κατωφλίωσης/threshold 110. Πέραν αυτών, η αποτίμηση της μικροδομής από τα ληφθέντα image pattern ενσωματώνεται επιτυχώς σε εξειδικευμένη γνωσιολογική βάση δεδομένων και η Γνώση αυτή μετατρέπεται (μέσω τεχνητής νοημοσύνης και εφαρμογής γενετικών αλγορίθμων σε περιβάλλον MatLab®) σε έμπειρο σύστημα (“expert system”) υποβοήθησης/υποστήριξης αποφάσεων (“decision support system”) Αειφορίας στην Κατασκευή.


2018 ◽  
Vol 103 ◽  
pp. 72-85 ◽  
Author(s):  
Alessandro Tufano ◽  
Riccardo Accorsi ◽  
Federica Garbellini ◽  
Riccardo Manzini

Sign in / Sign up

Export Citation Format

Share Document