ON MINIMUM AREA PLANAR UPWARD DRAWINGS OF DIRECTED TREES AND OTHER FAMILIES OF DIRECTED ACYCLIC GRAPHS

2008 ◽  
Vol 18 (03) ◽  
pp. 251-271 ◽  
Author(s):  
FABRIZIO FRATI

It has been shown that there exist planar digraphs that require exponential area in every upward straight-line planar drawing. On the other hand, upward poly-line planar drawings of planar graphs can be realized in Θ(n2) area. In this paper we consider families of DAGs that naturally arise in practice, like DAGs whose underlying graph is a tree (directed trees), is a bipartite graph (directed bipartite graphs), or is an outerplanar graph (directed outerplanar graphs). Concerning directed trees, we show that optimal Θ(n log n) area upward straight-line/poly-line planar drawings can be constructed. However, we prove that if the order of the neighbors of each node is assigned, then exponential area is required for straight-line upward drawings and quadratic area is required for poly-line upward drawings, results surprisingly and sharply contrasting with the area bounds for planar upward drawings of undirected trees. After having established tight bounds on the area requirements of planar upward drawings of several families of directed trees, we show how the results obtained for trees can be exploited to determine asymptotic optimal values for the area occupation of planar upward drawings of directed bipartite graphs and directed outerplanar graphs.

2007 ◽  
Vol 17 (02) ◽  
pp. 139-160 ◽  
Author(s):  
EMILIO DI GIACOMO ◽  
GIUSEPPE LIOTTA

Let G1 and G2 be two planar graphs having some vertices in common. A simultaneous embedding of G1 and G2 is a pair of crossing-free drawings of G1 and G2 such that each vertex in common is represented by the same point in both drawings. In this paper we show that an outerplanar graph and a simple path can be simultaneously embedded with fixed edges such that the edges in common are straight-line segments while the other edges of the outerplanar graph can have at most one bend per edge. We then exploit the technique for outerplanar graphs and paths to study simultaneous embeddings of other pairs of graphs. Namely, we study simultaneous embedding with fixed edges of: (i) two outerplanar graphs sharing a forest of paths and (ii) an outerplanar graph and a cycle.


2019 ◽  
Vol 91 ◽  
pp. 78-87 ◽  
Author(s):  
Anna E. Austin ◽  
Tania A. Desrosiers ◽  
Meghan E. Shanahan

Author(s):  
Endre Csóka ◽  
Łukasz Grabowski

Abstract We introduce and study analogues of expander and hyperfinite graph sequences in the context of directed acyclic graphs, which we call ‘extender’ and ‘hypershallow’ graph sequences, respectively. Our main result is a probabilistic construction of non-hypershallow graph sequences.


2002 ◽  
Vol 13 (06) ◽  
pp. 873-887
Author(s):  
NADIA NEDJAH ◽  
LUIZA DE MACEDO MOURELLE

We compile pattern matching for overlapping patterns in term rewriting systems into a minimal, tree matching automata. The use of directed acyclic graphs that shares all the isomorphic subautomata allows us to reduce space requirements. These are duplicated in the tree automaton. We design an efficient method to identify such subautomata and avoid duplicating their construction while generating the dag automaton. We compute some bounds on the size of the automata, thereby improving on previously known equivalent bounds for the tree automaton.


Sign in / Sign up

Export Citation Format

Share Document