scholarly journals NOTE ON THE NUMBER OF OBTUSE ANGLES IN POINT SETS

2014 ◽  
Vol 24 (03) ◽  
pp. 177-181 ◽  
Author(s):  
RUY FABILA-MONROY ◽  
CLEMENS HUEMER ◽  
EULÀLIA TRAMUNS

In 1979 Conway, Croft, Erdős and Guy proved that every set S of n points in general position in the plane determines at least [Formula: see text] obtuse angles and also presented a special set of n points to show the upper bound [Formula: see text] on the minimum number of obtuse angles among all sets S. We prove that every set S of n points in convex position determines at least [Formula: see text] obtuse angles, hence matching the upper bound (up to sub-cubic terms) in this case. Also on the other side, for point sets with low rectilinear crossing number, the lower bound on the minimum number of obtuse angles is improved.

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 525
Author(s):  
Javier Rodrigo ◽  
Susana Merchán ◽  
Danilo Magistrali ◽  
Mariló López

In this paper, we improve the lower bound on the minimum number of  ≤k-edges in sets of n points in general position in the plane when k is close to n2. As a consequence, we improve the current best lower bound of the rectilinear crossing number of the complete graph Kn for some values of n.


10.37236/9687 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Surya Mathialagan

Given sets $\mathcal{P}, \mathcal{Q} \subseteq \mathbb{R}^2$ of sizes $m$ and $n$ respectively, we are interested in the number of distinct distances spanned by $\mathcal{P} \times \mathcal{Q}$. Let $D(m, n)$ denote the minimum number of distances determined by sets in $\mathbb{R}^2$ of sizes $m$ and $n$ respectively, where $m \leq n$. Elekes showed that $D(m, n) = O(\sqrt{mn})$ when $m \leqslant n^{1/3}$. For $m \geqslant n^{1/3}$, we have the upper bound $D(m, n) = O(n/\sqrt{\log n})$ as in the classical distinct distances problem.In this work, we show that Elekes' construction is tight by deriving the lower bound of $D(m, n) = \Omega(\sqrt{mn})$ when $m \leqslant n^{1/3}$. This is done by adapting Székely's crossing number argument. We also extend the Guth and Katz analysis for the classical distinct distances problem to show a lower bound of $D(m, n) = \Omega(\sqrt{mn}/\log n)$ when $m \geqslant n^{1/3}$.


2020 ◽  
Vol 29 (04) ◽  
pp. 2050022
Author(s):  
Sarah Goodhill ◽  
Adam M. Lowrance ◽  
Valeria Munoz Gonzales ◽  
Jessica Rattray ◽  
Amelia Zeh

Using region crossing changes, we define a new invariant called the multi-region index of a knot. We prove that the multi-region index of a knot is bounded from above by twice the crossing number of the knot. In addition, we show that the minimum number of generators of the first homology of the double branched cover of [Formula: see text] over the knot is strictly less than the multi-region index. Our proof of this lower bound uses Goeritz matrices.


1997 ◽  
Vol 6 (3) ◽  
pp. 353-358 ◽  
Author(s):  
LÁSZLÓ A. SZÉKELY

We show that an old but not well-known lower bound for the crossing number of a graph yields short proofs for a number of bounds in discrete plane geometry which were considered hard before: the number of incidences among points and lines, the maximum number of unit distances among n points, the minimum number of distinct distances among n points.


Author(s):  
ATSUSHI KANEKO ◽  
M. KANO ◽  
KIYOSHI YOSHIMOTO

Let X and Y be two disjoint sets of points in the plane such that |X|=|Y| and no three points of X ∪ Y are on the same line. Then we can draw an alternating Hamilton cycle on X∪Y in the plane which passes through alternately points of X and those of Y, whose edges are straight-line segments, and which contains at most |X|-1 crossings. Our proof gives an O(n2 log n) time algorithm for finding such an alternating Hamilton cycle, where n =|X|. Moreover we show that the above upper bound |X|-1 on crossing number is best possible for some configurations.


2015 ◽  
Vol Vol. 17 no.2 (Graph Theory) ◽  
Author(s):  
Ahmad Biniaz ◽  
Prosenjit Bose ◽  
Anil Maheshwari ◽  
Michiel Smid

International audience Given a set $P$ of $n$ points in the plane, where $n$ is even, we consider the following question: How many plane perfect matchings can be packed into $P$? For points in general position we prove the lower bound of &#x230A;log<sub>2</sub>$n$&#x230B;$-1$. For some special configurations of point sets, we give the exact answer. We also consider some restricted variants of this problem.


2008 ◽  
Vol Vol. 10 no. 3 ◽  
Author(s):  
Cyril Gavoille ◽  
Nicolas Hanusse

International audience In this paper we show an information-theoretic lower bound of kn - o(kn) on the minimum number of bits to represent an unlabeled simple connected n-node graph of pagenumber k. This has to be compared with the efficient encoding scheme of Munro and Raman of 2kn + 2m + o(kn+m) bits (m the number of edges), that is 4kn + 2n + o(kn) bits in the worst-case. For m-edge graphs of pagenumber k (with multi-edges and loops), we propose a 2mlog2k + O(m) bits encoding improving the best previous upper bound of Munro and Raman whenever m ≤ 1 / 2kn/log2 k. Actually our scheme applies to k-page embedding containing multi-edge and loops. Moreover, with an auxiliary table of o(m log k) bits, our coding supports (1) the computation of the degree of a node in constant time, (2) adjacency queries with O(logk) queries of type rank, select and match, that is in O(logk *minlogk / loglogm, loglogk) time and (3) the access to δ neighbors in O(δ) runs of select, rank or match;.


10.37236/3025 ◽  
2014 ◽  
Vol 21 (1) ◽  
Author(s):  
Vida Dujmović ◽  
Pat Morin ◽  
Adam Sheffer

We prove tight crossing number inequalities for geometric graphs whose vertex sets are taken from a $d$-dimensional grid of volume $N$ and give applications of these inequalities to counting the number of crossing-free geometric graphs that can be drawn on such grids.In particular, we show that any geometric graph with $m\geq 8N$ edges and with vertices on a 3D integer grid of volume $N$, has $\Omega((m^2/N)\log(m/N))$ crossings. In $d$-dimensions, with $d\ge 4$, this bound becomes $\Omega(m^2/N)$. We provide matching upper bounds for all $d$. Finally, for $d\ge 4$ the upper bound implies that the maximum number of crossing-free geometric graphs with vertices on some $d$-dimensional grid of volume $N$ is $N^{\Theta(N)}$. In 3 dimensions it remains open to improve the trivial bounds, namely, the $2^{\Omega(N)}$ lower bound and the $N^{O(N)}$ upper bound.


10.37236/484 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Ondřej Bílka ◽  
Kevin Buchin ◽  
Radoslav Fulek ◽  
Masashi Kiyomi ◽  
Yoshio Okamoto ◽  
...  

Recently, Eisenbrand, Pach, Rothvoß, and Sopher studied the function $M(m, n)$, which is the largest cardinality of a convexly independent subset of the Minkowski sum of some planar point sets $P$ and $Q$ with $|P| = m$ and $|Q| = n$. They proved that $M(m,n)=O(m^{2/3}n^{2/3}+m+n)$, and asked whether a superlinear lower bound exists for $M(n,n)$. In this note, we show that their upper bound is the best possible apart from constant factors.


2019 ◽  
Vol 38 (5) ◽  
pp. 197-204
Author(s):  
M. Lellis Thivagar ◽  
V. Sutha Devi

Lattice is a partially ordered set in which all finite subsets have a least upper bound and greatest lower bound. Dedekind worked on lattice theory in the 19th century. Nano topology explored by Lellis Thivagar et.al. can be described as a collection of nano approximations, a non-empty finite universe and empty set for which equivalence classes are buliding blocks. This is named as Nano topology, because of its size and what ever may be the size of universe it has atmost five elements in it. The elements of Nano topology are called the Nano open sets. This paper is to study the nano topology within the context of lattices. In lattice, there is a special class of joincongruence relation which is defined with respect to an ideal. We have defined the nano approximations of a set with respect to an ideal of a lattice. Also some properties of the approximations of a set in a lattice with respect to ideals are studied. On the other hand, the lower and upper approximations have also been studied within the context various algebraic structures.


Sign in / Sign up

Export Citation Format

Share Document