Two Algorithms for the Sum of Diameters Problem and a Related Problem

1997 ◽  
Vol 07 (05) ◽  
pp. 493-508
Author(s):  
Muhammad H. Alsuwaiyel

Given a set S of points in the plane, we consider the problem of partitioning S into two subsets such that the sum of their diameters is minimized. We present two algorithms with time complexities O(n log 2 n / log log n) and O(n log n / (1 - ∊)), where ∊, 0 < ∊ < 1, is a real number that is dependent on the density of the point set. In almost all practical instances, the second algorithm runs in optimal O(n log n) time, improving all previous results in the case of nonsparse point sets. These bounds follow immediately from two corresponding algorithms with the same time complexities for the following problem: given a set of points S = {p1, p2, …,pn} in the plane sorted in increasing distance from p1, compute the sequence of diameters d1, d2, …, dn, where di= Diam {p1, …, pi} is the diameter of the first i points, 1 ≤ i ≤ n.

1979 ◽  
Vol 101 (1) ◽  
pp. 32-40 ◽  
Author(s):  
Y. L. Sarkisyan ◽  
K. C. Gupta ◽  
B. Roth

In the first part of this paper we consider the problem of determining circles which best approximate a given set of points. The approximation is one which minimizes the maximum radial deviation of the points from the approximating circle. Then a similar procedure is developed for determining straight lines which best approximate a given point set. The final parts of the paper illustrate the application of these results to synthesizing planar linkages.


2019 ◽  
Vol 29 (04) ◽  
pp. 301-306
Author(s):  
Danny Rorabaugh

A planar point set is in convex position precisely when it has a convex polygonization, that is, a polygonization with maximum interior angle measure at most [Formula: see text]. We can thus talk about the convexity of a set of points in terms of its min-max interior angle measure. The main result presented here is a nontrivial upper bound of the min-max value in terms of the number of points in the set. Motivated by a particular construction, we also pose a natural conjecture for the best upper bound.


2003 ◽  
Vol 40 (3) ◽  
pp. 269-286 ◽  
Author(s):  
H. Nyklová

In this paper we study a problem related to the classical Erdos--Szekeres Theorem on finding points in convex position in planar point sets. We study for which n and k there exists a number h(n,k) such that in every planar point set X of size h(n,k) or larger, no three points on a line, we can find n points forming a vertex set of a convex n-gon with at most k points of X in its interior. Recall that h(n,0) does not exist for n = 7 by a result of Horton. In this paper we prove the following results. First, using Horton's construction with no empty 7-gon we obtain that h(n,k) does not exist for k = 2(n+6)/4-n-3. Then we give some exact results for convex hexagons: every point set containing a convex hexagon contains a convex hexagon with at most seven points inside it, and any such set of at least 19 points contains a convex hexagon with at most five points inside it.


2007 ◽  
Vol 17 (04) ◽  
pp. 297-304 ◽  
Author(s):  
OLIVIER DEVILLERS ◽  
VIDA DUJMOVIĆ ◽  
HAZEL EVERETT ◽  
SAMUEL HORNUS ◽  
SUE WHITESIDES ◽  
...  

Given a set of n points in the plane, we consider the problem of computing the circular ordering of the points about a viewpoint q and efficiently maintaining this ordering information as q moves. In linear space, and after O(n log n) preprocessing time, our solution maintains the view at a cost of O( log n) amortized time (resp.O( log 2 n) worst case time) for each change. Our algorithm can also be used to maintain the set of points sorted according to their distance to q .


2020 ◽  
Vol 21 (1) ◽  
pp. 87 ◽  
Author(s):  
Laurence Boxer ◽  
P. Christopher Staecker

<p>In this paper, we examine some properties of the fixed point set of a digitally continuous function. The digital setting requires new methods that are not analogous to those of classical topological fixed point theory, and we obtain results that often differ greatly from standard results in classical topology.</p><p>We introduce several measures related to fixed points for continuous self-maps on digital images, and study their properties. Perhaps the most important of these is the fixed point spectrum F(X) of a digital image: that is, the set of all numbers that can appear as the number of fixed points for some continuous self-map. We give a complete computation of F(C<sub>n</sub>) where C<sub>n</sub> is the digital cycle of n points. For other digital images, we show that, if X has at least 4 points, then F(X) always contains the numbers 0, 1, 2, 3, and the cardinality of X. We give several examples, including C<sub>n</sub>, in which F(X) does not equal {0, 1, . . . , #X}.</p><p>We examine how fixed point sets are affected by rigidity, retraction, deformation retraction, and the formation of wedges and Cartesian products. We also study how fixed point sets in digital images can be arranged; e.g., for some digital images the fixed point set is always connected.</p>


2013 ◽  
Vol 05 (03) ◽  
pp. 1350021 ◽  
Author(s):  
BING SU ◽  
YINFENG XU ◽  
BINHAI ZHU

Given a set of points P = {p1, p2, …, pn} in the Euclidean plane, with each point piassociated with a given direction vi∈ V. P(pi, vi) defines a half-plane and L(pi, vi) denotes the baseline that is perpendicular to viand passing through pi. Define a region dominated by piand vias a Baseline Bounded Half-Plane Voronoi Region, denoted as V or(pi, vi), if a point x ∈ V or(pi, vi), then (1) x ∈ P(pi, vi); (2) the line segment l(x, pi) does not cross any baseline; (3) if there is a point pj, such that x ∈ P(pj, vj), and the line segment l(x, pj) does not cross any baseline then d(x, pi) ≤ d(x, pj), j ≠ i. The Baseline Bounded Half-Plane Voronoi Diagram, denoted as V or(P, V), is the union of all V or(pi, vi). We show that V or(pi, vi) and V or(P, V) can be computed in O(n log n) and O(n2log n) time, respectively. For the heterogeneous point set, the same problem is also considered.


1999 ◽  
Vol 42 (1) ◽  
pp. 46-51 ◽  
Author(s):  
Jan J. Dijkstra

AbstractIt is shown that under ZFC almost all planar compacta that meet every line in at most two points are subsets of sets that meet every line in exactly two points. This result was previously obtained by the author jointly with K. Kunen and J. vanMill under the assumption that Martin’s Axiom is valid.


2005 ◽  
Vol 15 (02) ◽  
pp. 151-166
Author(s):  
TAKESHI KANDA ◽  
KOKICHI SUGIHARA

This paper studies the two-dimensional range search problem, and constructs a simple and efficient algorithm based on the Voronoi diagram. In this problem, a set of points and a query range are given, and we want to enumerate all the points which are inside the query range as quickly as possible. In most of the previous researches on this problem, the shape of the query range is restricted to particular ones such as circles, rectangles and triangles, and the improvement on the worst-case performance has been pursued. On the other hand, the algorithm proposed in this paper is designed for a general shape of the query range in the two-dimensional space, and is intended to accomplish a good average-case performance. This performance is actually observed by numerical experiments. In these experiments, we compare the execution time of the proposed algorithm with those of other representative algorithms such as those based on the bucketing technique and the k-d tree. We can observe that our algorithm shows the better performance in almost all the cases.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoyun Wang ◽  
Xianquan Zhang

Point pattern matching is an important topic of computer vision and pattern recognition. In this paper, we propose a point pattern matching algorithm for two planar point sets under Euclidean transform. We view a point set as a complete graph, establish the relation between the point set and the complete graph, and solve the point pattern matching problem by finding congruent complete graphs. Experiments are conducted to show the effectiveness and robustness of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document