planar linkages
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 17)

H-INDEX

22
(FIVE YEARS 1)

Robotics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 6
Author(s):  
Juan Ignacio Valderrama-Rodríguez ◽  
José M. Rico ◽  
J. Jesús Cervantes-Sánchez ◽  
Ricardo García-García

This paper presents a screw theory approach for the computation of the instantaneous rotation centers of indeterminate planar linkages. Since the end of the 19th century, the determination of the instantaneous rotation, or velocity centers of planar mechanisms has been an important topic in kinematics that has led to the well-known Aronhold–Kennedy theorem. At the beginning of the 20th century, it was found that there were planar mechanisms for which the application of the Aronhold–Kennedy theorem was unable to find all the instantaneous rotation centers (IRCs). These mechanisms were denominated complex or indeterminate. The beginning of this century saw a renewed interest in complex or indeterminate planar mechanisms. In this contribution, a new and simpler screw theory approach for the determination of indeterminate rotation centers of planar linkages is presented. The new approach provides a simpler method for setting up the equations. Furthermore, the algebraic equations to be solved are simpler than the ones published to date. The method is based on the systematic application of screw theory, isomorphic to the Lie algebra, se(3), of the Euclidean group, SE(3), and the invariant symmetric bilinear forms defined on se(3).


2021 ◽  
Vol 7 ◽  
Author(s):  
Jing-Shan Zhao ◽  
Song-Tao Wei

This paper proposes a kinematics algorithm in screw coordinates for articulated linkages. As the screw consists of velocity and position variables of a joint, the solutions of the forward and inverse velocities are the functions of position coordinates and their time derivatives. The most prominent merit of this kinematic algorithm is that we only need the first order numerical differential interpolation for computing the acceleration. To calculate the displacement, we also only need the first order numerical integral of the velocity. This benefit stems from the screw the coordinates of which are velocity components. Both the forward and the inverse kinematics have the similar calculation process in this method. Through examples of planar open-chain linkage, single closed-chain linkage and multiple closed-chain linkage, the kinematics algorithm is validated. It is particularly fit for developing numerical programmers for forward and inverse kinematics in the same procedures, including the velocity, displacement and acceleration which provide the fundamental information for dynamics of the linkage.


2021 ◽  
pp. 1-12
Author(s):  
Samantha Sherman ◽  
Jonathan Hauenstein ◽  
Charles W. Wampler

Abstract Cognate linkages provide the useful property in mechanism design of having the same motion. This paper describes an approach for determining all coupler curve cognates for planar linkages with rotational joints. Although a prior compilation of six-bar cognates due to Dijksman purported to be a complete list, that analysis assumed, without proof, that cognates only arise by permuting link rotations. Our approach eliminates that assumption using arguments concerning the singular foci of the coupler curve to constrain a cognate search and then completing the analysis by solving a precision point problem. This analysis confirms that Dijksman's list for six-bars is comprehensive. As we further demonstrate on an eight-bar and a ten-bar example, the method greatly constrains the set of permutations of link rotations that can possibly lead to cognates, thereby facilitating the discovery of all cognates that arise in that manner. However, for these higher order linkages, the further step of using a precision point test to eliminate the possibility of any other cognates is still beyond our computational capabilities.


2021 ◽  
Author(s):  
Anar Nurizada ◽  
Anurag Purwar

Abstract This paper presents a machine learning approach for building an object detector for interactive simulation of planar linkages from handmade sketches and drawings found in patents and texts. Touch- and pen-input devices and interfaces have made sketching a more natural way for designers to express their ideas, especially during early design stages, but sketching existing complex mechanisms can be tedious and error-prone. While there are software applications available to help users make drawings, including that of a linkage mechanism, it is both educational and instructive to see existing sketches come to life via automated simulation. However, texts and patents present rich and diverse styles of mechanism drawings, which makes automated recognition difficult. Modern machine learning algorithms for object recognition require an extensive number of training images. However, there are no data sets of planar linkages available online. Therefore, our first goal was to generate images of sketches similar to hand-drawn ones and use state-of-the-art deep generation models, such as β-VAE, to produce more training data from a limited set of images. The latent space of β-VAE was explored by linear and spherical interpolations between sub-spaces and by varying latent space’s dimensions. This served two-fold objectives — 1) examine the possibility of generating new synthesized images via interpolation and 2) develop insights in the dependence of latent space dimension on bar linkage parameters. t-SNE dimensionality reduction technique was implemented to visualize the latent space of a β-VAE in a 2D space. Training images produced by animation rendering were used for fine-tuning a real-time object detection system — YOLOv3.


2021 ◽  
pp. 1-27
Author(s):  
Kuan-Lun Hsu ◽  
Jia-Yu Chung

Abstract This paper presents a modular method for the mechanical error analysis of complex planar linkages. The topology of the linkage under investigation is decomposed into several class II Assur group kinematic chains (AGKCs) combined in a given sequence. Therefore, the mechanical error of the whole linkage can be analyzed by investigating the error propagations of adopted AGKCs in successive order. Because class II AGKCs are first served as modules, the mechanical error equations of these AGKCs in terms of each error in link lengths and joint variables can be pre-formulated and embedded in form of subroutines in any programmable language. Once the AGKCs constituting the linkage topology is identified, the corresponding subroutines are introduced to compute the error propagations in the linkage. Therefore, the presented modular approach can facilitate the analysis by concentrating on the topology decomposition instead of the algebraic derivation. Numerical examples are provided to illustrate the advantage and flexibility of the modular approach.


2021 ◽  
Vol 11 (10) ◽  
pp. 4463
Author(s):  
Liangyi Nie ◽  
Huafeng Ding ◽  
Kwun-Lon Ting ◽  
Andrés Kecskeméthy

Instant center is an important kinematic characteristic which can be used for velocity and singularity analysis, configuration synthesis and dynamics modeling of multi-degree of freedom (multi-DOF) planar linkage. The Aronhold–Kennedy theorem is famous for locating instant centers of four-bar planar linkage, but for single-loop multi-DOF linkages, it fails. Increasing with the number of the links of single-loop multi-DOF planar linkages, the lack of link relationship makes the identification of instant center become a recognized difficulty. This paper proposes a virtual link method to identify instant centers of single-loop multi-DOF planar linkage. First, three types of instant centers are redefined and the instant center identification process graph is introduced. Then, based on coupled loop chain characteristic and definition of instant center, two criteria are presented to convert single-loop multi-DOF planar linkage into a two-loop virtual linkage by adding the virtual links. Subsequently, the unchanged instant centers are identified in the virtual linkage and used to acquire all the instant centers of original single-loop multi-DOF planar linkage. As a result, the instant centers of single-loop five-bar, six-bar planar linkage with several prismatic joints are systematically researched for the first time. Finally, the validity of the proposed method is demonstrated using loop equations. It is a graphical and straightforward method and the application is wide up to single-loop multi-DOF N-bar (N ≥ 5) planar linkage.


2021 ◽  
Vol 11 (8) ◽  
pp. 3546
Author(s):  
Mahmoud Helal ◽  
Jong Wan Hu ◽  
Hasan Eleashy

In this work, a generalized algorithm is introduced to generate all alternatives of planar N-bar kinematic chains (KCs) with simple joints containing sliders. A simple graphical technique is introduced to enumerate all available N-bar chains with prismatic (P) joints. Then, a new topological Loop Code (TLC) is presented to detect isomorphic chains during the enumeration process in addition to detecting rejected KCs. A visual C++ code is developed for automatic enumeration and detection of rejected KCs and isomorphic KCs. Examples of 6, 8, and 10-bar KCs are presented to illustrate algorithm procedures. As a result, 21, 16, and 1350 KCs have P-joints for Stephenson, Watt, and 8-bar chains, respectively. Also, 308 KCs are obtained for a 10-bar KC with up to 3 sliders.


2020 ◽  
Vol 111 (11-12) ◽  
pp. 3141-3157
Author(s):  
Antonio Armillotta

AbstractThe paper deals with a problem of robust optimization of mechanical assemblies, which combines the allocation of tolerances with the selection of dimensional parameters. The two tasks are carried out together with the aim of minimizing the manufacturing cost and the variation on an assembly-level functional characteristic. The problem is addressed in the specific context of planar linkages used in structures and mechanisms. The proposed solution is based on an optimality condition involving both tolerances and dimensions, which allows to define a joint optimization problem avoiding the need of two sequential optimization phases. The condition is developed with the method of Lagrange multipliers using an expanded formulation of the reciprocal power cost-tolerance function. The optimal tolerances depend on the stackup coefficients of the output characteristic, which are calculated with a tolerance analysis method based on a static analogy. The procedure is demonstrated on two examples to illustrate some application details and discuss potential advantages and limitations.


2020 ◽  
Vol 12 (6) ◽  
Author(s):  
Cody Leeheng Chan ◽  
Kwun-Lon Ting

Abstract This paper proposes a method to deal with the orientation uncertainty problem affected by joint clearances. To solve this problem, it is necessary to establish the theory of mobility of the floating link of multi-loop linkages. Since the theory of the mobility of floating link is yet complete, this paper provides a simple treatment to determine the rotatability between any two links, adjoined or not, in planar multi-loop linkages. The rotation angle of the floating link with respect to the reference link is defined so that there is no ambiguity in analyzing the rotation range of the floating link. Based on the joint rotation space (JRS) method, one may identify not only the branch formation but also the rotatability between any two links on each of the branches. It is a visualized method that reveals the rotation characteristic of multi-loop linkages. This paper demonstrates the rotation range of the floating link with respect to the reference link on six-bar Stephenson linkages, 2-degree-of-freedom (DOF). 7-bar linkages, and 3-DOF. Eight-bar parallel manipulators. This might be the first paper to deal with the rotatability of 3-DOF planar multi-loop linkages. This paper uses the method to predict the clearance-induced angle uncertainty of the 8-bar parallel manipulators, which determines the worst orientation error of the end-effector and fills up the void of the joint clearance uncertainty model proposed by Ting et al. (2017, “Clearance-Induced Position Uncertainty of Planar Linkages and Parallel Manipulators,” J. Mech. Rob., 9, p. 061001).


Sign in / Sign up

Export Citation Format

Share Document