Conjugacy growth and width of certain branch groups

2014 ◽  
Vol 24 (08) ◽  
pp. 1213-1231 ◽  
Author(s):  
Elisabeth Fink

The conjugacy growth function counts the number of distinct conjugacy classes in a ball of radius n. We give a lower bound for the conjugacy growth of certain branch groups, among them the Grigorchuk group. This bound is a function of intermediate growth. We further prove that certain branch groups have the property that every element can be expressed as a product of uniformly boundedly many conjugates of the generators. We call this property bounded conjugacy width. We also show how bounded conjugacy width relates to other algebraic properties of groups and apply these results to study the palindromic width of some branch groups.

2001 ◽  
Vol 11 (01) ◽  
pp. 73-88 ◽  
Author(s):  
LAURENT BARTHOLDI

In 1980, Rostislav Grigorchuk constructed an infinite finitely generated torsion 2-group G, called the first Grigorchuk group, and in 1983 showed that it is of intermediate growth, with the following estimates on its growth function γ (See [6]): [Formula: see text] where β= log 32(31)≈ 0.991. He conjectured that the lower bound is actually tight. In this paper we improve the lower bound to [Formula: see text] where α≈0.5157, and thus disproves the conjecture.


Author(s):  
Jérémie Brieussel ◽  
Thibault Godin ◽  
Bijan Mohammadi

The growth of a finitely generated group is an important geometric invariant which has been studied for decades. It can be either polynomial, for a well-understood class of groups, or exponential, for most groups studied by geometers, or intermediate, that is between polynomial and exponential. Despite recent spectacular progresses, the class of groups with intermediate growth remains largely mysterious. Many examples of such groups are constructed using Mealy automata. The aim of this paper is to give an algorithmic procedure to study the growth of such automaton groups, and more precisely to provide numerical upper bounds on their exponents. Our functions retrieve known optimal bounds on the famous first Grigorchuk group. They also improve known upper bounds on other automaton groups and permitted us to discover several new examples of automaton groups of intermediate growth. All the algorithms described are implemented in GAP, a language dedicated to computational group theory.


2004 ◽  
Vol 14 (05n06) ◽  
pp. 677-702 ◽  
Author(s):  
V. S. GUBA

We study some properties of the Cayley graph of R. Thompson's group F in generators x0, x1. We show that the density of this graph, that is, the least upper bound of the average vertex degree of its finite subgraphs is at least 3. It is known that a 2-generated group is not amenable if and only if the density of the corresponding Cayley graph is strictly less than 4. It is well known this is also equivalent to the existence of a doubling function on the Cayley graph. This means there exists a mapping from the set of vertices into itself such that for some constant K>0, each vertex moves by a distance at most K and each vertex has at least two preimages. We show that the density of the Cayley graph of a 2-generated group does not exceed 3 if and only if the group satisfies the above condition with K=1. Besides, we give a very easy formula to find the length (norm) of a given element of F in generators x0, x1. This simplifies the algorithm by Fordham. The length formula may be useful for finding the general growth function of F in generators x0, x1 and the growth rate of this function. In this paper, we show that the growth rate of F has a lower bound of [Formula: see text].


2005 ◽  
Vol 15 (05n06) ◽  
pp. 907-937 ◽  
Author(s):  
VADIM A. KAIMANOVICH

The structure of a self-similar group G naturally gives rise to a transformation which assigns to any probability measure μ on G and any vertex w in the action tree of the group a new probability measure μw. If the measure μ is self-similar in the sense that μw is a convex combination of μ and the δ-measure at the group identity, then the asymptotic entropy of the random walk (G, μ) vanishes; therefore, the random walk is Liouville and the group G is amenable. We construct self-similar measures on several classes of self-similar groups, including the Grigorchuk group of intermediate growth.


Author(s):  
BHARAT TALWAR ◽  
RANJANA JAIN

Abstract We prove that for a Banach algebra A having a bounded $\mathcal {Z}(A)$ -approximate identity and for every $\mathbf {[IN]}$ group G with a weight w which is either constant on conjugacy classes or satisfies $w \geq 1$ , $\mathcal {Z}(L^{1}_{w}(G) \otimes ^{\gamma } A) \cong \mathcal {Z}(L^{1}_{w}(G)) \otimes ^{\gamma } \mathcal {Z}(A)$ . As an application, we discuss the conditions under which $\mathcal {Z}(L^{1}_{\omega }(G,A))$ enjoys certain Banach algebraic properties, such as weak amenability or semisimplicity.


2021 ◽  
pp. 1-56
Author(s):  
JOONTAE KIM ◽  
SEONGCHAN KIM ◽  
MYEONGGI KWON

Abstract The aim of this article is to apply a Floer theory to study symmetric periodic Reeb orbits. We define positive equivariant wrapped Floer homology using a (anti-)symplectic involution on a Liouville domain and investigate its algebraic properties. By a careful analysis of index iterations, we obtain a non-trivial lower bound on the minimal number of geometrically distinct symmetric periodic Reeb orbits on a certain class of real contact manifolds. This includes non-degenerate real dynamically convex star-shaped hypersurfaces in ${\mathbb {R}}^{2n}$ which are invariant under complex conjugation. As a result, we give a partial answer to the Seifert conjecture on brake orbits in the contact setting.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yinling Gao ◽  
Yong Yang

Abstract A permutation group 𝐺 acting on a set Ω induces a permutation action on the power set P ⁢ ( Ω ) \mathscr{P}(\Omega) (the set of all subsets of Ω). Let 𝐺 be a finite permutation group of degree 𝑛, and let s ⁢ ( G ) s(G) denote the number of orbits of 𝐺 on P ⁢ ( Ω ) \mathscr{P}(\Omega) . In this paper, we give the explicit lower bound of log 2 ⁡ s ⁢ ( G ) / log 2 ⁡ | G | \log_{2}s(G)/{\log_{2}\lvert G\rvert} over all solvable groups 𝐺. As applications, we first give an explicit bound of a result of Keller for estimating the number of conjugacy classes, and then we combine it with the McKay conjecture to estimate the number of p ′ p^{\prime} -degree irreducible representations of a solvable group.


Sign in / Sign up

Export Citation Format

Share Document