scholarly journals Classification of nilpotent associative algebras of small dimension

2018 ◽  
Vol 28 (01) ◽  
pp. 133-161 ◽  
Author(s):  
Willem A. De Graaf

We classify nilpotent associative algebras of dimensions up to [Formula: see text] over any field. This is done by constructing the nilpotent associative algebras as central extensions of algebras of smaller dimension, analogous to methods known for nilpotent Lie algebras.

2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Michel Goze ◽  
Elisabeth Remm

AbstractThe classification of complex or real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example, the nilpotent Lie algebras are classified only up to dimension 7. Moreover, to recognize a given Lie algebra in the classification list is not so easy. In this work, we propose a different approach to this problem. We determine families for some fixed invariants and the classification follows by a deformation process or a contraction process. We focus on the case of 2- and 3-step nilpotent Lie algebras. We describe in both cases a deformation cohomology for this type of algebras and the algebras which are rigid with respect to this cohomology. Other


2018 ◽  
Vol 30 (1) ◽  
pp. 109-128 ◽  
Author(s):  
Leonardo Bagaglini ◽  
Marisa Fernández ◽  
Anna Fino

Abstract We show obstructions to the existence of a coclosed {\mathrm{G}_{2}} -structure on a Lie algebra {\mathfrak{g}} of dimension seven with non-trivial center. In particular, we prove that if there exists a Lie algebra epimorphism from {\mathfrak{g}} to a six-dimensional Lie algebra {\mathfrak{h}} , with the kernel contained in the center of {\mathfrak{g}} , then any coclosed {\mathrm{G}_{2}} -structure on {\mathfrak{g}} induces a closed and stable three form on {\mathfrak{h}} that defines an almost complex structure on {\mathfrak{h}} . As a consequence, we obtain a classification of the 2-step nilpotent Lie algebras which carry coclosed {\mathrm{G}_{2}} -structures. We also prove that each one of these Lie algebras has a coclosed {\mathrm{G}_{2}} -structure inducing a nilsoliton metric, but this is not true for 3-step nilpotent Lie algebras with coclosed {\mathrm{G}_{2}} -structures. The existence of contact metric structures is also studied.


1982 ◽  
Vol 34 (6) ◽  
pp. 1215-1239 ◽  
Author(s):  
L. J. Santharoubane

Introduction. The natural problem of determining all the Lie algebras of finite dimension was broken in two parts by Levi's theorem:1) the classification of semi-simple Lie algebras (achieved by Killing and Cartan around 1890)2) the classification of solvable Lie algebras (reduced to the classification of nilpotent Lie algebras by Malcev in 1945 (see [10])).The Killing form is identically equal to zero for a nilpotent Lie algebra but it is non-degenerate for a semi-simple Lie algebra. Therefore there was a huge gap between those two extreme cases. But this gap is only illusory because, as we will prove in this work, a large class of nilpotent Lie algebras is closely related to the Kac-Moody Lie algebras. These last algebras could be viewed as infinite dimensional version of the semisimple Lie algebras.


2008 ◽  
Vol 102 (1) ◽  
pp. 17 ◽  
Author(s):  
J. C. Benjumea ◽  
J. Núnez ◽  
A. F. Tenorio

The main goal of this paper is to compute a minimal matrix representation for each non-isomorphic nilpotent Lie algebra of dimension less than $6$. Indeed, for each of these algebras, we search the natural number $n\in\mathsf{N}\setminus\{1\}$ such that the linear algebra $\mathfrak{g}_n$, formed by all the $n \times n$ complex strictly upper-triangular matrices, contains a representation of this algebra. Besides, we show an algorithmic procedure which computes such a minimal representation by using the Lie algebras $\mathfrak{g}_n$. In this way, a classification of such algebras according to the dimension of their minimal matrix representations is obtained. In this way, we improve some results by Burde related to the value of the minimal dimension of the matrix representations for nilpotent Lie algebras.


2002 ◽  
Author(s):  
Θεόδουλος Ταπανίδης

In this paper we study special properties of Nilpotent Lie Algebras of dimension eight over the field K of characteristic zero. The complete classification of these Lie Algebras has been done recently and there exist a great number of open problems. The problems, which have been solved in the thesis, are the following: i. There is not an Algebra of this category, which has two maximum abellian ideals of different dimension. ii. Extension of a Nilpotent Lie Algebra to others of bigger dimension. iii. Determination of Nilpotent Lie Algebras from another category iv. Determination of characteristic Nilpotent Lie Algebras from this category of Nilpotent Lie Algebras of dimensions eight. This thesis has three chapters. Each of them is analyzed as follows. The first chapter contains basic elements of the theory of Nilpotent Lie Algebras. This has eleven paragraphs; each of them consists of the following. The first paragraph has a general theory of algebra. Basic elements about Lie Algebras are given in the second paragraph. The structure constants of a Lie algebra are also given in this paragraph and also some relations between them. Finally it contains the determination of a Lie Algebra by constant structure and conversely. The third paragraph includes mappings between Lie Algebras. The notions of homomorphic and isomorphic Lie Algebras are defined by these mappings. The definitions of subalgebras and ideals of Lie Algebras are given in the fourth paragraph. It also contains some of their properties. Finally it has the notion of quotient Lie Algebra. The derivations of a Lie Algebra are contain in the fifth paragraph. It also contains some of their properties. The sixth paragraph includes some basic subsets of Lie Algebra. These basic sets play an important role in the theory of Lie Algebras. From a Lie Algebra g we can form sequences of ideals of g. Two basic ideals are the central sequence and the derived sequence. These are in the seventh paragraph. The eighth paragraph contains some elements of solvable Lie Algebras. Some elements of Nilpotent Lie Algebras are included in the ninth paragraph. The tenth paragraph contains basic elements of simple and semi-simple Lie Algebras. Finally the problem of classification of Lie Algebras is included in the last paragraph. The purpose of the second chapter is to study some properties of Nilpotent Lie Algebras of dimension eight. The whole chapter contains three paragraphs; each of them is analyzed as follows. The first paragraph describes the maximum abelian ideals of a Nilpotent Lie Algebra. The Nilpotent Lie Algebras of dimension eight are studied in the second paragraph. It is given their separation in categories according to the number of parameters, which have the none zero Lie brackets. Special categories of Nilpotent Lie Algebras of dimension eight are determined in the third paragraph. Furthermore some basic problems are studied for which we have some solutions. One of them is to determine a Nilpotent Lie Algebra of dimension eight which has two maximum abelian ideals of different dimension. The answer to this problem is negative, that mean there exists no such Lie Algebra of dimension eight, which has two maximum abelian ideals of different dimension. In this paragraph is also given the theory of extension of a Nilpotent Lie Algebra of bigger dimensions. The third chapter contains the study of Nilpotent Lie Algebras of dimension eight which are characteristically Nilpotent for all the parameters. Another category of Nilpotent Lie Algebras is determined which is characteristically Nilpotent for special values of parameters. The chapter has two paragraphs. The first paragraph gives special elements for characteristically Nilpotent Lie Algebras, which are necessary for the next paragraph. In the second paragraph we determine the category of Nilpotent Lie Algebras of dimension eight which are characteristically Nilpotent. We also determine other such Nilpotent Lie Algebras of dimension eight for special values of the parameters.


2008 ◽  
Vol 15 (02) ◽  
pp. 347-360 ◽  
Author(s):  
Haishan Zhang ◽  
Caihui Lu

The classification of nilpotent Lie algebras of maximal rank was solved by Santharoubane. In the present paper, we prove that the classification of non-degenerate solvable Lie algebras of maximal rank can be obtained from the work of Santharoubane.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Jarnishs Beltran ◽  
Enrique G. Reyes

We review some aspects of the theory of Lie algebras of (twisted and untwisted) formal pseudodifferential operators in one and several variables in a general algebraic context. We focus mainly on the construction and classification of nontrivial central extensions. As applications, we construct hierarchies of centrally extended Lie algebras of formal differential operators in one and several variables, Manin triples and hierarchies of nonlinear equations in Lax and zero curvature form.


1992 ◽  
Vol 112 (3) ◽  
pp. 449-453
Author(s):  
Jürgen Wisliceny ◽  
Rainer Zerck

The aim of this paper is to prove an inequality of Golod-Shafarevich type for metabelian Lie algebras and to show that this inequality is best possible up to a constant factor. Investigations of this kind were started in [4] in connection with the solution of the class field tower problem. It was shown that if there is a finite p-group which may be presented as a pro-p-group with d ≥ 2 generators and r relations then the inequality r > ¼(d − 1)2 holds; and Vinberg [8] improved this result by showingThe inequality (1) also holds for presentations of nilpotent Lie algebras (see [6]) (with the exception (d, r) = (2, 1)) and nilpotent associative algebras (see [4, 8, 6]). If the relations have of degree at least m ≥ 3 then more relations are needed. More precisely, Koch [5] has shown that the inequalityholds for finite p-groups, and the corresponding results hold for associative algebras and Lie algebras.


Sign in / Sign up

Export Citation Format

Share Document