The Möbius function of PSL(3,2p) for any prime p

Author(s):  
Martino Borello ◽  
Francesca Dalla Volta ◽  
Giovanni Zini

Let [Formula: see text] be the simple group [Formula: see text], where [Formula: see text] is a prime number. For any subgroup [Formula: see text] of [Formula: see text], we compute the Möbius function [Formula: see text] of [Formula: see text] in the subgroup lattice of [Formula: see text]. To this aim, we describe the intersections of maximal subgroups of [Formula: see text]. We point out some connections of the Möbius function with other combinatorial objects, and, in this context, we compute the reduced Euler characteristic of the order complex of the subposet of [Formula: see text]-subgroups of [Formula: see text], for any prime [Formula: see text] and any prime power [Formula: see text].

1995 ◽  
Vol 51 (3) ◽  
pp. 495-499 ◽  
Author(s):  
Ahmad Erfanian ◽  
James Wiegold

The aim of this paper is to give a new precise formula for h(n, A), where A is a finite non-abelian simple group, h(n, A) is the maximum number such that Ah(n, A) can ke generated by n elements, and n ≥ 2. P. Hall gave a formula for h(n, A) in terms of the Möbius function of the subgroup lattice of A; the new formula involves a concept called cospread associated with that of spread as explained in Brenner and Wiegold (1975).


2019 ◽  
Vol 18 (04) ◽  
pp. 1950070
Author(s):  
Ali Mahmoudifar

It is proved that some finite simple groups are quasirecognizable by prime graph. In [A. Mahmoudifar and B. Khosravi, On quasirecognition by prime graph of the simple groups [Formula: see text] and [Formula: see text], J. Algebra Appl. 14(1) (2015) 12pp], the authors proved that if [Formula: see text] is a prime number and [Formula: see text], then there exists a natural number [Formula: see text] such that for all [Formula: see text], the simple group [Formula: see text] (where [Formula: see text] is a linear or unitary simple group) is quasirecognizable by prime graph. Also[Formula: see text] in that paper[Formula: see text] the author posed the following conjecture: Conjecture. For every prime power [Formula: see text] there exists a natural number [Formula: see text] such that for all [Formula: see text] the simple group [Formula: see text] is quasirecognizable by prime graph. In this paper [Formula: see text] as the main theorem we prove that if [Formula: see text] is a prime power and satisfies some especial conditions [Formula: see text] then there exists a number [Formula: see text] associated to [Formula: see text] such that for all [Formula: see text] the finite linear simple group [Formula: see text] is quasirecognizable by prime graph. Finally [Formula: see text] by a calculation via a computer program [Formula: see text] we conclude that the above conjecture is valid for the simple group [Formula: see text] where [Formula: see text] [Formula: see text] is an odd number and [Formula: see text].


1993 ◽  
Vol 16 (2) ◽  
pp. 373-383 ◽  
Author(s):  
Graeme L. Cohen ◽  
Peter Hagis

The infinitary divisors of a natural numbernare the products of its divisors of the formpyα2α, wherepyis a prime-power component ofnand∑αyα2α(whereyα=0or1) is the binary representation ofy. In this paper, we investigate the infinitary analogues of such familiar number theoretic functions as the divisor sum function, Euler's phi function and the Möbius function.


2010 ◽  
Vol 81 (2) ◽  
pp. 343-349 ◽  
Author(s):  
TERENCE TAO

AbstractLet 〈𝒫〉⊂N be a multiplicative subsemigroup of the natural numbers N={1,2,3,…} generated by an arbitrary set 𝒫 of primes (finite or infinite). We give an elementary proof that the partial sums ∑ n∈〈𝒫〉:n≤x(μ(n))/n are bounded in magnitude by 1. With the aid of the prime number theorem, we also show that these sums converge to ∏ p∈𝒫(1−(1/p)) (the case where 𝒫 is all the primes is a well-known observation of Landau). Interestingly, this convergence holds even in the presence of nontrivial zeros and poles of the associated zeta function ζ𝒫(s)≔∏ p∈𝒫(1−(1/ps))−1 on the line {Re(s)=1}. As equivalent forms of the first inequality, we have ∣∑ n≤x:(n,P)=1(μ(n))/n∣≤1, ∣∑ n∣N:n≤x(μ(n))/n∣≤1, and ∣∑ n≤x(μ(mn))/n∣≤1 for all m,x,N,P≥1.


2016 ◽  
Vol 5 (1) ◽  
pp. 31
Author(s):  
SRIMITRA K.K ◽  
BHARATHI D ◽  
SAJANA SHAIK ◽  
◽  
◽  
...  

Order ◽  
2021 ◽  
Author(s):  
Antonio Bernini ◽  
Matteo Cervetti ◽  
Luca Ferrari ◽  
Einar Steingrímsson

AbstractWe initiate the study of the enumerative combinatorics of the intervals in the Dyck pattern poset. More specifically, we find some closed formulas to express the size of some specific intervals, as well as the number of their covering relations. In most of the cases, we are also able to refine our formulas by rank. We also provide the first results on the Möbius function of the Dyck pattern poset, giving for instance a closed expression for the Möbius function of initial intervals whose maximum is a Dyck path having exactly two peaks.


1987 ◽  
Vol 101 (2) ◽  
pp. 221-231 ◽  
Author(s):  
Joseph P. S. Kung

AbstractLet and ℳ be subsets of a finite lattice L. is said to be concordant with ℳ if, for every element x in L, either x is in ℳ or there exists an element x+ such that (CS1) the Möbius function μ(x, x+) ≠ 0 and (CS2) for every element j in , x ∨ j ≠ x+. We prove that if is concordant with ℳ, then the incidence matrix I(ℳ | ) has maximum possible rank ||, and hence there exists an injection σ: → ℳ such that σ(j) ≥ j for all j in . Using this, we derive several rank and covering inequalities in finite lattices. Among the results are generalizations of the Dowling-Wilson inequalities and Dilworth's covering theorem to semimodular lattices, and a refinement of Dilworth's covering theorem for modular lattices.


Sign in / Sign up

Export Citation Format

Share Document