scholarly journals A note on growth sequences of finite simple groups

1995 ◽  
Vol 51 (3) ◽  
pp. 495-499 ◽  
Author(s):  
Ahmad Erfanian ◽  
James Wiegold

The aim of this paper is to give a new precise formula for h(n, A), where A is a finite non-abelian simple group, h(n, A) is the maximum number such that Ah(n, A) can ke generated by n elements, and n ≥ 2. P. Hall gave a formula for h(n, A) in terms of the Möbius function of the subgroup lattice of A; the new formula involves a concept called cospread associated with that of spread as explained in Brenner and Wiegold (1975).

Author(s):  
Martino Borello ◽  
Francesca Dalla Volta ◽  
Giovanni Zini

Let [Formula: see text] be the simple group [Formula: see text], where [Formula: see text] is a prime number. For any subgroup [Formula: see text] of [Formula: see text], we compute the Möbius function [Formula: see text] of [Formula: see text] in the subgroup lattice of [Formula: see text]. To this aim, we describe the intersections of maximal subgroups of [Formula: see text]. We point out some connections of the Möbius function with other combinatorial objects, and, in this context, we compute the reduced Euler characteristic of the order complex of the subposet of [Formula: see text]-subgroups of [Formula: see text], for any prime [Formula: see text] and any prime power [Formula: see text].


2021 ◽  
Vol 13 (3) ◽  
pp. 59
Author(s):  
Nader Taffach

In this paper, we study the problem of how a finite group can be generated by some subgroups. In order to the finite simple groups, we show that any finite non-abelian simple group can be generated by two Sylow p1 - and p_2 -subgroups, where p_1  and p_2  are two different primes. We also show that for a given different prime numbers p  and q , any finite group can be generated by a Sylow p -subgroup and a q -subgroup.


2009 ◽  
Vol 12 ◽  
pp. 82-119 ◽  
Author(s):  
László Babai ◽  
Péter P. Pálfy ◽  
Jan Saxl

AbstractA p-regular element in a finite group is an element of order not divisible by the prime number p. We show that for every prime p and every finite simple group S, a fair proportion of elements of S is p-regular. In particular, we show that the proportion of p-regular elements in a finite classical simple group (not necessarily of characteristic p) is greater than 1/(2n), where n – 1 is the dimension of the projective space on which S acts naturally. Furthermore, in an exceptional group of Lie type this proportion is greater than 1/15. For the alternating group An, this proportion is at least 26/(27√n), and for sporadic simple groups, at least 2/29.We also show that for an arbitrary field F, if the simple group S is a quotient of a finite subgroup of GLn(F) then for any prime p, the proportion of p-regular elements in S is at least min{1/31, 1/(2n)}.Along the way we obtain estimates for the proportion of elements of certain primitive prime divisor orders in exceptional groups, complementing work by Niemeyer and Praeger (1998).Our result shows that in finite simple groups, p-regular elements can be found efficiently by random sampling. This is a key ingredient to recent polynomial-time Monte Carlo algorithms for matrix groups.Finally we complement our lower bound results with the following upper bound: for all n ≥ 2 there exist infinitely many prime powers q such that the proportion of elements of odd order in PSL(n,q) is less than 3/√n.


Author(s):  
Zhenfeng Wu

Denote by [Formula: see text] the number of Sylow [Formula: see text]-subgroups of [Formula: see text]. For every subgroup [Formula: see text] of [Formula: see text], it is easy to see that [Formula: see text], but [Formula: see text] does not divide [Formula: see text] in general. Following [W. Guo and E. P. Vdovin, Number of Sylow subgroups in finite groups, J. Group Theory 21(4) (2018) 695–712], we say that a group [Formula: see text] satisfies DivSyl(p) if [Formula: see text] divides [Formula: see text] for every subgroup [Formula: see text] of [Formula: see text]. In this paper, we show that “almost for every” finite simple group [Formula: see text], there exists a prime [Formula: see text] such that [Formula: see text] does not satisfy DivSyl(p).


2019 ◽  
Vol 18 (04) ◽  
pp. 1950070
Author(s):  
Ali Mahmoudifar

It is proved that some finite simple groups are quasirecognizable by prime graph. In [A. Mahmoudifar and B. Khosravi, On quasirecognition by prime graph of the simple groups [Formula: see text] and [Formula: see text], J. Algebra Appl. 14(1) (2015) 12pp], the authors proved that if [Formula: see text] is a prime number and [Formula: see text], then there exists a natural number [Formula: see text] such that for all [Formula: see text], the simple group [Formula: see text] (where [Formula: see text] is a linear or unitary simple group) is quasirecognizable by prime graph. Also[Formula: see text] in that paper[Formula: see text] the author posed the following conjecture: Conjecture. For every prime power [Formula: see text] there exists a natural number [Formula: see text] such that for all [Formula: see text] the simple group [Formula: see text] is quasirecognizable by prime graph. In this paper [Formula: see text] as the main theorem we prove that if [Formula: see text] is a prime power and satisfies some especial conditions [Formula: see text] then there exists a number [Formula: see text] associated to [Formula: see text] such that for all [Formula: see text] the finite linear simple group [Formula: see text] is quasirecognizable by prime graph. Finally [Formula: see text] by a calculation via a computer program [Formula: see text] we conclude that the above conjecture is valid for the simple group [Formula: see text] where [Formula: see text] [Formula: see text] is an odd number and [Formula: see text].


2016 ◽  
Vol 09 (03) ◽  
pp. 1650054
Author(s):  
E. N. Myslovets

Let [Formula: see text] be a class of finite simple groups. We say that a finite group [Formula: see text] is a [Formula: see text]-group if all composition factors of [Formula: see text] are contained in [Formula: see text]. A group [Formula: see text] is called [Formula: see text]-supersoluble if every chief [Formula: see text]-factor of [Formula: see text] is a simple group. In this paper, properties of mutually permutable products of [Formula: see text]-supersoluble finite groups are studied. Some earlier results on mutually permutable products of [Formula: see text]-supersoluble groups (SC-groups) appear as particular cases.


2016 ◽  
Vol 26 (4) ◽  
pp. 628-640 ◽  
Author(s):  
ANER SHALEV

We study the distribution of products of conjugacy classes in finite simple groups, obtaining effective two-step mixing results, which give rise to an approximation to a conjecture of Thompson.Our results, combined with work of Gowers and Viola, also lead to the solution of recent conjectures they posed on interleaved products and related complexity lower bounds, extending their work on the groups SL(2,q) to all (non-abelian) finite simple groups.In particular it follows that, ifGis a finite simple group, andA,B⊆Gtfort⩾ 2 are subsets of fixed positive densities, then, asa= (a1, . . .,at) ∈Aandb= (b1, . . .,bt) ∈Bare chosen uniformly, the interleaved producta•b:=a1b1. . .atbtis almost uniform onG(with quantitative estimates) with respect to the ℓ∞-norm.It also follows that the communication complexity of an old decision problem related to interleaved products ofa,b∈Gtis at least Ω(tlog |G|) whenGis a finite simple group of Lie type of bounded rank, and at least Ω(tlog log |G|) whenGis any finite simple group. Both these bounds are best possible.


1971 ◽  
Vol 12 (4) ◽  
pp. 385-392 ◽  
Author(s):  
N. Bryce

Until 1965, when Janko [7] established the existence of his finite simple group J1, the five Mathieu groups were the only known examples of isolated finite simple groups. In 1951, R. G. Stanton [10] showed that M12 and M24 were determined uniquely by their order. Recent characterizations of M22 and M23 by Janko [8], M22 by D. Held [6], and M11 by W. J. Wong [12], have facilitated the unique determination of the three remaining Mathieu groups by their orders. D. Parrott [9] has so characterized M22 and M11, while this paper is an outline of the characterization of M23 in terms of its order.


2015 ◽  
Vol 25 (03) ◽  
pp. 439-444 ◽  
Author(s):  
Elisabeth Fink ◽  
Andreas Thom

A palindrome is a word that reads the same left-to-right as right-to-left. We show that every simple group has a finite generating set X, such that every element of it can be written as a palindrome in the letters of X. Moreover, every simple group has palindromic width pw(G, X) = 1, where X only differs by at most one additional generator from any given generating set. On the contrary, we prove that all non-abelian finite simple groups G also have a generating set S with pw(G, S) > 1. As a by-product of our work we also obtain that every just-infinite group has finite palindromic width with respect to a finite generating set. This provides first examples of groups with finite palindromic width but infinite commutator width.


1998 ◽  
Vol 58 (1) ◽  
pp. 137-145 ◽  
Author(s):  
Cai Heng Li

For a finite group G and a subset S of G which does not contain the identity of G, we use Cay(G, S) to denote the Cayley graph of G with respect to S. For a positive integer m, the group G is called a (connected) m-DCI-group if for any (connected) Cayley graphs Cay(G, S) and Cay(G, T) of out-valency at most m, Sσ = T for some σ ∈ Aut(G) whenever Cay(G, S) ≅ Cay(G, T). Let p(G) be the smallest prime divisor of |G|. It was previously shown that each finite group G is a connected m-DCI-group for m ≤ p(G) − 1 but this is not necessarily true for m = p(G). This leads to a natural question: which groups G are connected p(G)-DCI-groups? Here we conjecture that the answer of this question is positive for finite simple groups, that is, finite simple groups are all connected 2-DCI-groups. We verify this conjecture for the linear groups PSL(2, q). Then we prove that a nonabelian simple group G is a 2-DCI-group if and only if G = A5.


Sign in / Sign up

Export Citation Format

Share Document