scholarly journals NEW EXAMPLES OF FINITELY PRESENTED GROUPS WITH STRONG FIXED POINT PROPERTIES

2009 ◽  
Vol 01 (01) ◽  
pp. 1-12 ◽  
Author(s):  
INDIRA CHATTERJI ◽  
MARTIN KASSABOV

We give an explicit finite presentation of a group normally generated by SL∞(ℤ). As a consequence, such a group cannot act on e.g. a finite dimensional contractible manifold or on a compact manifold.

1991 ◽  
Vol 01 (03) ◽  
pp. 339-351
Author(s):  
ROBERT H. GILMAN

This paper is concerned with computation in finitely presented groups. We discuss a procedure for showing that a finite presentation presents a group with a free subgroup of finite index, and we give methods for solving various problems in such groups. Our procedure works by constructing a particular kind of partial groupoid whose universal group is isomorphic to the group presented. When the procedure succeeds, the partial groupoid can be used as an aid to computation in the group.


1985 ◽  
Vol 50 (3) ◽  
pp. 743-772 ◽  
Author(s):  
Fritz Grunewald ◽  
Daniel Segal

This paper is a continuation of our previous work in [12]. The results, and some applications, have been described in the announcement [13]; it may be useful to discuss here, a little more fully, the nature and purpose of this work.We are concerned basically with three kinds of algorithmic problem: (1) isomorphism problems, (2) “orbit problems”, and (3) “effective generation”.(1) Isomorphism problems. Here we have a class of algebraic objects of some kind, and ask: is there a uniform algorithm for deciding whether two arbitrary members of are isomorphic? In most cases, the answer is no: no such algorithm exists. Indeed this has been one of the most notable applications of methods of mathematical logic in algebra (see [26, Chapter IV, §4] for the case where is the class of all finitely presented groups). It turns out, however, that when consists of objects which are in a certain sense “finite-dimensional”, then the isomorphism problem is indeed algorithmically soluble. We gave such algorithms in [12] for the following cases: = {finitely generated nilpotent groups}; = {(not necessarily associative) rings whose additive group is finitely generated}; = {finitely Z-generated modules over a fixed finitely generated ring}.Combining the methods of [12] with his own earlier work, Sarkisian has obtained analogous results with the integers replaced by the rationals: in [20] and [21] he solves the isomorphism problem for radicable torsion-free nilpotent groups of finite rank and for finite-dimensional Q-algebras.


2013 ◽  
Vol 156 (1) ◽  
pp. 115-121
Author(s):  
ANITHA THILLAISUNDARAM

AbstractIn a previous paper, Button and Thillaisundaram proved that all finitely presented groups of p-deficiency greater than one are p-large. Here we prove that groups with a finite presentation of p-deficiency one possess a finite index subgroup that surjects onto the integers. This implies that these groups do not have Kazhdan's property (T). Additionally, we show that the aforementioned result of Button and Thillaisundaram implies a result of Lackenby.


2020 ◽  
Vol 8 ◽  
Author(s):  
MARCUS DE CHIFFRE ◽  
LEV GLEBSKY ◽  
ALEXANDER LUBOTZKY ◽  
ANDREAS THOM

Several well-known open questions (such as: are all groups sofic/hyperlinear?) have a common form: can all groups be approximated by asymptotic homomorphisms into the symmetric groups $\text{Sym}(n)$ (in the sofic case) or the finite-dimensional unitary groups $\text{U}(n)$ (in the hyperlinear case)? In the case of $\text{U}(n)$ , the question can be asked with respect to different metrics and norms. This paper answers, for the first time, one of these versions, showing that there exist finitely presented groups which are not approximated by $\text{U}(n)$ with respect to the Frobenius norm $\Vert T\Vert _{\text{Frob}}=\sqrt{\sum _{i,j=1}^{n}|T_{ij}|^{2}},T=[T_{ij}]_{i,j=1}^{n}\in \text{M}_{n}(\mathbb{C})$ . Our strategy is to show that some higher dimensional cohomology vanishing phenomena implies stability, that is, every Frobenius-approximate homomorphism into finite-dimensional unitary groups is close to an actual homomorphism. This is combined with existence results of certain nonresidually finite central extensions of lattices in some simple $p$ -adic Lie groups. These groups act on high-rank Bruhat–Tits buildings and satisfy the needed vanishing cohomology phenomenon and are thus stable and not Frobenius-approximated.


2019 ◽  
Vol 22 (2) ◽  
pp. 313-345 ◽  
Author(s):  
Anthony Genevois

Abstract In this article, we state and prove a general criterion allowing us to show that some groups are hyperbolically elementary, meaning that every isometric action of one of these groups on a Gromov-hyperbolic space either fixes a point at infinity, or stabilises a pair of points at infinity, or has bounded orbits. Also, we show how such a hyperbolic rigidity leads to fixed-point properties on finite-dimensional CAT(0) cube complexes. As an application, we prove that Thompson’s group V is hyperbolically elementary, and we deduce that it satisfies Property {({\rm FW}_{\infty})} , i.e., every isometric action of V on a finite-dimensional CAT(0) cube complex fixes a point. It provides the first example of a (finitely presented) group acting properly on an infinite-dimensional CAT(0) cube complex such that all its actions on finite-dimensional CAT(0) cube complexes have global fixed points.


Author(s):  
Hüseyin Işık ◽  
Vahid Parvaneh ◽  
Mohammad Reza Haddadi

Author(s):  
Klaus Thomsen

SynopsisWe consider automorphic actions on von Neumann algebras of a locally compact group E given as a topological extension 0 → A → E → G → 0, where A is compact abelian and second countable. Motivated by the wish to describe and classify ergodic actions of E when G is finite, we classify (up to conjugacy) first the ergodic actions of locally compact groups on finite-dimensional factors and then compact abelian actions with the property that the fixed-point algebra is of type I with atomic centre. We then handle the case of ergodic actions of E with the property that the action is already ergodic when restricted to A, and then, as a generalisation, the case of (not necessarily ergodic) actions of E with the property that the restriction to A is an action with abelian atomic fixed-point algebra. Both these cases are handled for general locally compact-countable G. Finally, we combine the obtained results to classify the ergodic actions of E when G is finite, provided that either the extension is central and Hom (G, T) = 0, or G is abelian and either cyclic or of an order not divisible by a square.


1968 ◽  
Vol 33 (2) ◽  
pp. 296-297
Author(s):  
J. C. Shepherdson

Sign in / Sign up

Export Citation Format

Share Document