THE HALF-SPACE PROBLEM IN DISCRETE KINETIC THEORY

2003 ◽  
Vol 13 (01) ◽  
pp. 99-119 ◽  
Author(s):  
AMAH d'ALMEIDA ◽  
RENÉE GATIGNOL

This paper deals with the analysis of the steady flow of a semi-infinite expanse of rarefied gas bounded by its plane condensed phase by the methods of the discrete kinetic theory. The existence of the solutions of the corresponding boundary value problem is discussed. The relations among the parameters of the flow near the condensed phase and at infinity required for the existence of solutions are established. The problem of condensation of a vapor gas on its own condensed phase is then solved analytically for a particular discrete model and remarkable features of the flow are analyzed.

Filomat ◽  
2017 ◽  
Vol 31 (9) ◽  
pp. 2763-2771 ◽  
Author(s):  
Dalila Azzam-Laouir ◽  
Samira Melit

In this paper, we prove a theorem on the existence of solutions for a second order differential inclusion governed by the Clarke subdifferential of a Lipschitzian function and by a mixed semicontinuous perturbation.


2016 ◽  
Vol 56 (1) ◽  
pp. 143-153 ◽  
Author(s):  
Katarzyna Szymańska-Dębowska

Abstract This work is devoted to the existence of solutions for a system of nonlocal resonant boundary value problem $$\matrix{{x'' = f(t,x),} \hfill & {x'(0) = 0,} \hfill & {x'(1) = {\int_0^1 {x(s)dg(s)},} }} $$ where f : [0, 1] × ℝk → ℝk is continuous and g : [0, 1] → ℝk is a function of bounded variation.


Author(s):  
G. K. ZAKIR’YANOVA ◽  
◽  
L. A. ALEXEYEVA ◽  

The first boundary value problem of the theory of elasticity for an anisotropic elastic half-space is solved when a transport load moves along its surface. The subsonic Raleigh case is considered, when the velocity of motion is less than the velocity of propagation of bulk and surface elastic waves. The Green’s tensor of the transport boundary value problem is constructed and on its basis the solution of boundary value problems for a wide class of distributed traffic loads is given. To solve the problem, the methods of tensor and linear algebra, integral Fourier transform, and operator method for solving systems of differential equations were used. The obtained solution makes it possible to investigate the dynamics of the rock mass for a wide class of transport loads, in a wide range of velocities, both low velocities and high velocities, and to evaluate the strength properties of the rock mass under the influence of road transport. In particular, determine the permissible velocities of its movement and carrying capacity. In addition, a investigation on its basis of the movement of the day surface along the route will make it possible to establish criteria for the seismic resistance of ground structures and the permissible distances of their location from the route.


Sign in / Sign up

Export Citation Format

Share Document