ON A SELECTION RULE FOR ELECTRIC TRANSITIONS IN AXIALLY-SYMMETRIC NUCLEI

2010 ◽  
Vol 19 (04) ◽  
pp. 685-691 ◽  
Author(s):  
A. DOBROWOLSKI ◽  
A. GÓŹDŹ ◽  
J. DUDEK

We consider many-body E-l transition matrix-elements between two nuclear states of different axially-symmetric deformations characterised by two different (mutually non-orthogonal) sets of single-particle wave-functions. Yet, when varying the deformations of the initial, final, or both these states one notices abrupt changes in the form of vanishing and possibly reappearance of the transition matrix elements calculated between the corresponding Slater determinants. The mechanism is explained in terms of the conservation of the |m| quantum number (absolute value of the projection of individual-nucleonic angular-momenta); consequences for the more general calculations of this type also without axial symmetry are discussed.

1970 ◽  
Vol 48 (24) ◽  
pp. 3047-3058 ◽  
Author(s):  
M. Elbel

Transition matrix elements connecting the Zeeman sublevels of the lowest p doublets in light alkali atoms have been derived using methods of steady-state collision theory. The matrix elements generally consist of two parts which, under rotations of the quantization axis with respect to the scattering plane, behave like components of a first rank and a second rank tensor, respectively. Only the second rank tensor components lead to the selection rule j, mJ↔j, −mj, whereas the first rank tensor components do not. The latter can be ascribed to a formal interaction term which is proportional to the inner product of the orbital angular momenta of the valence electron and the colliding atoms, respectively, thus accounting for molecular coupling phenomena during the collision. Finally, the transition matrix elements are used to calculate the depolarizing cross sections from the van der Waals potential.


2001 ◽  
Vol 08 (03n04) ◽  
pp. 321-325
Author(s):  
ŞAKIR ERKOÇ ◽  
HATICE KÖKTEN

We have performed self-consistent field (SCF) calculations of the electronic structure of GaAs/Ga 1-x Al x As superlattices with parabolic potential profile within the effective mass theory. We have calculated the optical transition matrix elements involving transitions from the hole states to the electron states, and we have also computed the oscillator strength matrix elements for the transitions among the electron states.


2017 ◽  
Vol 95 (1) ◽  
Author(s):  
B. A. Brown ◽  
A. B. Garnsworthy ◽  
T. Kibédi ◽  
A. E. Stuchbery

1981 ◽  
Vol 103 (4-5) ◽  
pp. 255-258 ◽  
Author(s):  
A.M. Bernstein ◽  
V.R. Brown ◽  
V.A. Madsen

Sign in / Sign up

Export Citation Format

Share Document