scholarly journals Bivariate q -normal distribution for transition matrix elements in quantum many-body systems

2020 ◽  
Vol 2020 (9) ◽  
pp. 093101
Author(s):  
Manan Vyas ◽  
V K B Kota
2010 ◽  
Vol 19 (04) ◽  
pp. 685-691 ◽  
Author(s):  
A. DOBROWOLSKI ◽  
A. GÓŹDŹ ◽  
J. DUDEK

We consider many-body E-l transition matrix-elements between two nuclear states of different axially-symmetric deformations characterised by two different (mutually non-orthogonal) sets of single-particle wave-functions. Yet, when varying the deformations of the initial, final, or both these states one notices abrupt changes in the form of vanishing and possibly reappearance of the transition matrix elements calculated between the corresponding Slater determinants. The mechanism is explained in terms of the conservation of the |m| quantum number (absolute value of the projection of individual-nucleonic angular-momenta); consequences for the more general calculations of this type also without axial symmetry are discussed.


2001 ◽  
Vol 08 (03n04) ◽  
pp. 321-325
Author(s):  
ŞAKIR ERKOÇ ◽  
HATICE KÖKTEN

We have performed self-consistent field (SCF) calculations of the electronic structure of GaAs/Ga 1-x Al x As superlattices with parabolic potential profile within the effective mass theory. We have calculated the optical transition matrix elements involving transitions from the hole states to the electron states, and we have also computed the oscillator strength matrix elements for the transitions among the electron states.


2017 ◽  
Vol 95 (1) ◽  
Author(s):  
B. A. Brown ◽  
A. B. Garnsworthy ◽  
T. Kibédi ◽  
A. E. Stuchbery

1981 ◽  
Vol 103 (4-5) ◽  
pp. 255-258 ◽  
Author(s):  
A.M. Bernstein ◽  
V.R. Brown ◽  
V.A. Madsen

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Onno R. Diermann ◽  
Martin Holthaus

AbstractWe demonstrate that a periodically driven quantum system can adopt a quasistationary state which is effectively much colder than a thermal reservoir it is coupled to, in the sense that certain Floquet states of the driven-dissipative system can carry much higher population than the ground state of the corresponding undriven system in thermal equilibrium. This is made possible by a rich Fourier spectrum of the system’s Floquet transition matrix elements, the components of which are addressed individually by a suitably peaked reservoir density of states. The effect is expected to be important for driven solid-state systems interacting with a phonon bath predominantly at well-defined frequencies.


2009 ◽  
Vol 79 (15) ◽  
Author(s):  
Carlos F. Destefani ◽  
Chris McDonald ◽  
Suren Sukiasyan ◽  
Thomas Brabec

Sign in / Sign up

Export Citation Format

Share Document