scholarly journals NUCLEAR SUB-STRUCTURE IN 112–122Ba NUCLEI WITHIN RELATIVISTIC MEAN FIELD THEORY

2011 ◽  
Vol 20 (05) ◽  
pp. 1227-1241 ◽  
Author(s):  
M. BHUYAN ◽  
S. K. PATRA ◽  
P. ARUMUGAM ◽  
RAJ K. GUPTA

Working within the framework of relativistic mean field theory, we study for the first time the clustering structure (nuclear sub-structure) of 112–122 Ba nuclei in an axially deformed cylindrical coordinate. We calculate the individual neutrons and protons density distributions for Ba -isotopes. From the analysis of the clustering configurations in total (neutrons-plus-protons) density distributions for various shapes of both the ground and excited states, we find different sub-structures inside the Ba nuclei considered here. The important step, carried out here for the first time, is the counting of number of protons and neutrons present in the clustering region(s). 12 C is shown to constitute the cluster configuration in prolate-deformed ground-states of 112–116 Ba and oblate-deformed first excited states of 118–122 Ba nuclei. Presence of other lighter clusters such as 2 H , 3 H and nuclei in the neighborhood of N = Z, 14 N , 34–36 Cl , 36 Ar and 42 Ca are also indicated in the ground and excited states of these nuclei. Cases with no cluster configuration are shown for 112–116 Ba in their first and second excited states. All these results are of interest for the observed intermediate-mass-fragments and fusion–fission processes, and the so far unobserved evaporation residues from the decaying Ba * compound nuclei formed in heavy ion reactions.

2006 ◽  
Vol 21 (36) ◽  
pp. 2751-2761
Author(s):  
MIAO YU ◽  
PENG-FEI ZHANG ◽  
TU-NAN RUAN ◽  
JIAN-YOU GUO

The properties of N = 41 isotones are investigated systemically by using the nonlinear relativistic mean field theory. It is found that all the calculating binding energies with four different interactions are comparable for the ground and low-lying excited states, and very close to the data available. The calculations show that there exists a neutron halo in the first excited state in 69 Ni , as well as in the second excited state in 69 Ni . It is also predicted that there exists a neutron halo in the first excited state in 65 Cr , 66 Mn , 67 Fe and 68 Co .


1997 ◽  
Vol 14 (4) ◽  
pp. 259-262 ◽  
Author(s):  
Ren Zhong-zhou ◽  
Zhu Zhi-yuan ◽  
Cai Yan-huang ◽  
Shen Yao-song ◽  
Zhan Wen-long ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document