scholarly journals A Self-Consistent Treatment of Damped Motion for Stable and Unstable Collective Modes

1998 ◽  
Vol 07 (02) ◽  
pp. 243-274 ◽  
Author(s):  
H. Hofmann ◽  
D. Kiderlen

We address the dynamics of damped collective modes in terms of first and second moments. The modes are introduced in a self-consistent fashion with the help of a suitable application of linear response theory. Quantum effects in the fluctuations are governed by diffusion coefficients Dμν. The latter are obtained through a fluctuation dissipation theorem generalized to allow for a treatment of unstable modes. Numerical evaluations of the Dμν are presented. We discuss briefly how this picture may be used to describe global motion within a locally harmonic approximation. Relations to other methods are discussed, like "dissipative tunneling", RPA at finite temperature and generalizations of the "Static Path Approximation".

2021 ◽  
Vol 9 ◽  
Author(s):  
S. Di Sabatino ◽  
P.-F. Loos ◽  
P. Romaniello

Using the simple (symmetric) Hubbard dimer, we analyze some important features of the GW approximation. We show that the problem of the existence of multiple quasiparticle solutions in the (perturbative) one-shot GW method and its partially self-consistent version is solved by full self-consistency. We also analyze the neutral excitation spectrum using the Bethe-Salpeter equation (BSE) formalism within the standard GW approximation and find, in particular, that 1) some neutral excitation energies become complex when the electron-electron interaction U increases, which can be traced back to the approximate nature of the GW quasiparticle energies; 2) the BSE formalism yields accurate correlation energies over a wide range of U when the trace (or plasmon) formula is employed; 3) the trace formula is sensitive to the occurrence of complex excitation energies (especially singlet), while the expression obtained from the adiabatic-connection fluctuation-dissipation theorem (ACFDT) is more stable (yet less accurate); 4) the trace formula has the correct behavior for weak (i.e., small U) interaction, unlike the ACFDT expression.


1970 ◽  
Vol 48 (13) ◽  
pp. 1631-1633 ◽  
Author(s):  
T. H. Cheung ◽  
E. Tong ◽  
K. P. Wang

It is generally understood (Kubo) that the linearized version of the memory function approach of Mori and Zwanzig is equivalent, through the application of the fluctuation–dissipation theorem, to the corresponding linear response theory of correlation function calculations developed in the work of Kadanoff and Martin. We give here a simple example of spin diffusion to show this explicitly, which reflects the general connection between these two approaches.


2019 ◽  
Vol 3 (7) ◽  
Author(s):  
Ifeanyi John Onuorah ◽  
Pietro Bonfà ◽  
Roberto De Renzi ◽  
Lorenzo Monacelli ◽  
Francesco Mauri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document