Self-Consistent Treatment of the Frequency Spectrum of a Model Paraelectric

1971 ◽  
Vol 4 (11) ◽  
pp. 3971-3982 ◽  
Author(s):  
N. S. Gillis ◽  
T. R. Koehler
2014 ◽  
Vol 9 (S307) ◽  
pp. 291-292
Author(s):  
A. Domiciano de Souza ◽  
M. Borges Fernandes ◽  
A. C. Carciofi ◽  
O. Chesneau

AbstractThe research of stars with the B[e] phenomenon is still in its infancy, with several unanswered questions. Physically realistic models that treat the formation and evolution of their complex circumstellar environments are rare. The code HDUST (developed by A. C. Carciofi and J. Bjorkman) is one of the few existing codes that provides a self-consistent treatment of the radiative transfer in a gaseous and dusty circumstellar environment seen around B[e] supergiant stars. In this work we used the HDUST code to study the circumstellar medium of the binary system GG Car, where the primary component is probably an evolved B[e] supergiant. This system also presents a disk (probably circumbinary), which is responsible for the molecular and dusty signatures seen in GG Car spectra. We obtained VLTI/MIDI data on GG~Car at eight baselines, which allowed to spatially resolve the gaseous and dusty circumstellar environment. From the interferometric visibilities and SED modeling with HDUST, we confirm the presence of a compact ring, where the hot dust lies. We also show that large grains can reproduce the lack of structure in the SED and visibilities across the silicate band. We conclude the dust condensation site is much closer to the star than previously thought. This result provides stringent constraints on future theories of grain formation and growth around hot stars.


The only existing theory of atmospheric turbulence which is capable of giving a quantitative approach to the complex problems of diffusion in the lower atmosphere is the classical theory in which it is generally assumed that the effect of eddies in the atmosphere is completely analogous to that of molecules in a gas apart from a difference of scale. This assumption, which later evidence has shown to be incorrect, is not essential to the theory, and in the present paper is replaced by the assumption that the mixing length of an eddy increases with both height above and nature of the earth’s surface . With this assumption a self-consistent treatment of diffusion is developed which is able to account quantitatively for such meteorological phenomena as the distribution of water vapour over land and sea (including evaporation from the oceans) and the diffusion of smoke near the ground. The treatment is mainly confined to diffusion in an adiabatic atmosphere.


2004 ◽  
Vol 1 (3) ◽  
pp. 69-77 ◽  
Author(s):  
Jasna Crnjanski ◽  
Dejan Gvozdic

The self-consistent no parabolic calculation of a V-groove-quantum-wire (VQWR) band structure is presented. A comparison with the parabolic flat-band model of VQWR shows that both, the self-consistency and the nonparabolicity shift sub band edges, in some cases even in the opposite directions. These shifts indicate that for an accurate description of inter sub band absorption, both effects have to be taken into the account.


1988 ◽  
Vol 40 (3) ◽  
pp. 579-583 ◽  
Author(s):  
Bhimsen K. Shivamoggi

Despite extensive theoretical investigation of the problem of ion-acoustic solitary waves in an inhomogeneous plasma, a fully satisfactory account has so far not been given. This paper provides a critical account of the shortcomings of the previous theoretical approaches and then describes a fully self-consistent treatment of the problem.


2015 ◽  
Vol 10 (S314) ◽  
pp. 109-112
Author(s):  
Louis Amard ◽  
Ana Palacios ◽  
Corinne Charbonnel

AbstractWe present stellar evolution models of young solar-type stars including self consistent treatment of rotational mixing and extraction of angular momentum (AM) by magnetized wind including the most up-to-date physic of AM transport.


Sign in / Sign up

Export Citation Format

Share Document