scholarly journals EFFECTIVE PERMEABILITY OF FRACTURED POROUS MEDIA WITH FRACTAL DUAL-POROSITY MODEL

Fractals ◽  
2017 ◽  
Vol 25 (04) ◽  
pp. 1740014 ◽  
Author(s):  
PENG XU ◽  
HAICHENG LIU ◽  
AGUS PULUNG SASMITO ◽  
SHUXIA QIU ◽  
CUIHONG LI

As natural fractures show statistically fractal scaling laws, fractal geometry has been proposed and applied to model the fracture geometry and to study the hydraulic properties of fractured porous media. In this paper, a fractal dual-porosity model is developed to study the single-phase fluid flow through fractured porous media. An analytical expression for effective permeability of fractured porous media is derived, which depends on the fractal dimension and fracture aperture. The effect of fractal dimensions for fracture aperture distribution and tortuosity, the ratio of minimum to maximum fracture apertures and fracture fraction on the effective permeability have been discussed. In addition, a power law relationship between the effective permeability and fracture fraction is proposed to predict the equivalent hydraulic properties of fractured porous media. Compared with empirical formulas for effective permeability, the present fractal dual-porosity model can capture the statistical characteristics of fractures and shed light on the transport mechanism of fractured porous media.

Fractals ◽  
2016 ◽  
Vol 24 (02) ◽  
pp. 1650018 ◽  
Author(s):  
PENG XU ◽  
CUIHONG LI ◽  
SHUXIA QIU ◽  
AGUS PULUNG SASMITO

The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.


Ground Water ◽  
2017 ◽  
Vol 55 (4) ◽  
pp. 558-564 ◽  
Author(s):  
Seiyed Mossa Hosseini ◽  
Behzad Ataie-Ashtiani

2007 ◽  
Vol 205 (1-2) ◽  
pp. 123-134 ◽  
Author(s):  
Martin H. Larsson ◽  
Kristian Persson ◽  
Barbro Ulén ◽  
Anders Lindsjö ◽  
Nicholas J. Jarvis

Sign in / Sign up

Export Citation Format

Share Document