fracture length
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 81)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Mark Mcclure ◽  
Garrett Fowler ◽  
Matteo Picone

Abstract In URTeC-123-2019, a group of operators and service companies presented a step-by-step procedure for interpretation of diagnostic fracture injection tests (DFITs). The procedure has now been applied on a wide variety of data across North and South America. This paper statistically summarizes results from 62 of these DFITs, contributed by ten operators spanning nine different shale plays. URTeC-123-2019 made several novel claims, which are tested and validated in this paper. We find that: (1) a ‘compliance method’ closure signature is apparent in the significant majority of DFITs; (2) in horizontal wells, early time pressure drop due to near-wellbore/midfield tortuosity is substantial and varies greatly, from 500 to 6000+ psi; (3) in vertical wells, early-time pressure drop is far weaker; this supports the interpretation that early- time pressure drop in horizontal wells is caused by near-wellbore/midfield tortuosity from transverse fracture propagation; (4) the (not recommended) tangent method of estimating closure yields Shmin estimates that are 100-1000+ psi lower than the estimate from the (recommended) compliance method; the implied net pressure values are 2.5x higher on average and up to 5-6x higher; (5) as predicted by theory, the difference between the tangent and compliance stress and net pressure estimates increases in formations with greater difference between Shmin and pore pressure; (6) the h-function and G-function methods allow permeability to be estimated from truncated data that never reaches late-time impulse flow; comparison shows that they give results that are close to the permeability estimates from impulse linear flow; (7) false radial flow signatures occur in the significant majority of gas shale DFITs, and are rare in oil shale DFITs; (8) if false radial signatures are used to estimate permeability, they tend to overestimate permeability, often by 100x or more; (9) the holistic-method permeability correlation overestimates permeability by 10-1000x; (10) in tests that do not reach late-time impulse transients, it is reasonable to make an approximate pore pressure estimate by extrapolating the pressure from the peak in t*dP/dt using a scaling of t^(-1/2) in oil shales and t^(3/4) in gas shales. The findings have direct practical implications for operators. Accurate permeability estimates are needed for calculating effective fracture length and for optimizing well spacing and frac design. Accurate stress estimation is fundamental to hydraulic fracture design and other geomechanics applications.


2021 ◽  
Vol 6 (4) ◽  
pp. 92-105
Author(s):  
Mikhail I. Kremenetsky ◽  
Andrey I. Ipatov ◽  
Alexander A. Rydel ◽  
Kharis A. Musaleev ◽  
Anastasija  N. Nikonorova

Background. When creating an effective reservoir pressure maintenance system, unstable spontaneous hydraulic fractures can be created in injection wells. This can both negatively and positively affect hydrocarbon production. First, fracture improves reservoir connectivity, which increases injection efficiency. On the other hand, unstable fractures can cause behind-the-casing flows and unproductive injection into off-target layers or fingering. Goal. The paper is devoted to the analysis of well testing (PTA) and production logging (PLT) improvement for the diagnosis of unstable fractures in injection wells. Materials and methods. The analysis is based on the results of modeling the pressure in the reservoir system, describing the penetration reservoirs by an unrestricted conductivity unstable fracture. It is taken into account that the fracture can cross both the perforated formation and the thickness not penetrated by the perforation, and can grow with increasing overbalance. The modeling results made it possible both to assess the potential informative capabilities of well testing and to substantiate recommendations for the practical use of the obtained results. Conclusions. The proposed approaches to the technology of well testing and production logging and the interpretation of their results make it possible to estimate the additional thicknesses of the reservoirs connected by the spontaneous hydraulic fracturing to injection, the proportion of nonproductive injection in the total volume of the well. The research technology used by the authors is based on continuous measurements of pressure and flow rate during cyclic change of pressure and assessment of the effective transmissibility of the formation system at different heights of unstable fractures. The role of the PLT is to determine the effective production thickness of the reservoirs. When assessing the injectivity profile when penetrating the injector with the spontaneous hydraulic fracturing, the key role belongs to non-stationary temperature logging. In this case, it is necessary to take into account the specific features of temperature relaxation in the wellbore after the injection cycle, related to hydraulic fracturing, primarily the increase in the relaxation rate with increasing fracture length.


2021 ◽  
Author(s):  
Ahmed AlJanahi ◽  
Sayed Abdelrady ◽  
Hassan AlMannai ◽  
Feras AlTawash ◽  
Eyad Ali ◽  
...  

Abstract Carbonate formations often require stimulation treatments to be developed economically. Sometimes, proppant fracturing yields better results than acid stimulation. Carbonates are seldom stimulated with large-mesh-size proppants due to admittance issues caused by fissures and high Young’s modulus and narrow fracture width. The Magwa formation of Bahrain’s Awali brownfield is a rare case in which large treatments using 12/20-mesh proppant were successful after the more than 50 years of field development. To achieve success, a complex approach was required during preparation and execution of the hydraulic fracturing campaign. During the first phase, the main challenges that restricted achieving full production potential in previous stimulation attempts (both acid and proppant fracturing) were identified. Fines migration and shale instability were addressed during advanced core testing. Tests for embedment were conducted, and a full suite of logs was obtained to improve geomechanical modeling. In addition, a target was set to maximize fracture propped length to address the need for maximum reservoir contact in the tight Magwa reservoir and to maximize fracture width and conductivity. Sufficient fracture width in the shallow oil formation was required to withstand embedment. Sufficient conductivity was required to clean out the fracture under low-temperature conditions (124°F) and to minimize drawdown along the fracture considering the relatively low energy of the formation (pore pressure less than 1,000 psi). Understanding the fracture dimensions was critical to optimize the design. Independent measurement using high-resolution temperature logging and advanced sonic anisotropy measurements after fracturing helped to quantify fracture height. As a result of the applied comprehensive workflow, 18 wells were successfully stimulated, including three horizontal wellbores with multistage fracturing - achieving effective fracture half-lengths of 450-to 500-ft. Oil production from the wells exceeded expectations and more than doubled the results of all the previous attempts. Production decline rates were also less pronounced due to achieved fracture length and the ability to produce more reservoir compartments. The increase in oil recovery is due to the more uniform drainage systems enabled by the conductive fractures. The application of new and advanced techniques taken from several disciplines enabled successful propped fracture stimulation of a fractured carbonate formation. Extensive laboratory research and independent geometry measurements yielded significant fracture optimization and resulted in a step-change in well productivity. The techniques and lessons learned will be of benefit to engineers dealing with shallow carbonate reservoirs around the world.


2021 ◽  
Author(s):  
Abu M. Sani ◽  
Hatim S. AlQasim ◽  
Rayan A. Alidi

Abstract This paper presents the use of real-time microseismic (MS) monitoring to understand hydraulic fracturing of a horizontal well drilled in the minimum stress direction within a high-temperature high-pressure (HTHP) tight sandstone formation. The well achieved a reservoir contact of more than 3,500 ft. Careful planning of the monitoring well and treatment well setup enabled capture of high quality MS events resulting in useful information on the regional maximum horizontal stress and offers an understanding of the fracture geometry with respect to clusters and stage spacing in relation to fracture propagation and growth. The maximum horizontal stress based on MS events was found to be different from the expected value with fracture azimuth off by more than 25 degree among the stages. Transverse fracture propagation was observed with overlapping MS events across stages. Upward fracture height growth was dominant in tighter stages. MS fracture length and height in excess of 500 ft and 100 ft, respectively, were created for most of the stages resulting in stimulated volumes that are high. Bigger fracture jobs yielded longer fracture length and were more confined in height growth. MS events fracture lengths and heights were found to be on average 1.36 and 1.30 times, respectively, to those of pressure-match.


Author(s):  
Jessica McBeck ◽  
J. M. Aiken ◽  
B. Cordonnier ◽  
Y. Ben-Zion ◽  
F. Renard

AbstractThe geometric properties of fractures influence whether they propagate, arrest, or coalesce with other fractures. Thus, quantifying the relationship between fracture network characteristics may help predict fracture network development, and perhaps precursors to catastrophic failure. To constrain the relationship and predictability of fracture characteristics, we deform eight one centimeter tall rock cores under triaxial compression while acquiring in situ X-ray tomograms. The tomograms reveal precise measurements of the fracture network characteristics above the spatial resolution of 6.5 µm. We develop machine learning models to predict the value of each characteristic using the other characteristics, and excluding the macroscopic stress or strain imposed on the rock. The models predict fracture development more accurately in the experiments performed on granite and monzonite, than the experiments on marble. Fracture network development may be more predictable in these igneous rocks because their microstructure is more mechanically homogeneous than the marble, producing more systematic fracture development that is not strongly impeded by grain contacts and cleavage planes. The varying performance of the models suggest that fracture volume, length, and aperture are the most predictable of the characteristics, while fracture orientation is the least predictable. Orientation does not correlate with length, as suggested by the idea that the orientation evolves with increasing differential stress and thus fracture length. This difference between the observed and expected relationship between orientation and length highlights the influence of mechanical heterogeneities and local stress perturbations on fracture growth as fractures propagate, link, and coalesce.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7513
Author(s):  
Shilong Shang ◽  
Lijuan Gu ◽  
Hailong Lu

Natural gas hydrate is considered as a potential energy resource. To develop technologies for the exploitation of natural gas hydrate, several field gas production tests have been carried out in permafrost and continental slope sediments. However, the gas production rates in these tests were still limited, and the low permeability of the hydrate-bearing sediments is identified as one of the crucial factors. Artificial fracturing is proposed to promote gas production rate by improving reservoir permeability. In this research, numerical studies about the effect of fracture length and fluid conductivity on production performance were carried out on an artificially fractured Class 3 hydrate reservoir (where the single hydrate zone is surrounded by an overlaying and underlying hydrate-free zone), in which the equivalent conductivity method was applied to depict the artificial fracture. The results show that artificial fracture can enhance gas production by offering an extra fluid flow channel for the migration of gas released from hydrate dissociation. The effect of fracture length on production is closely related to the time frame of production, and gas production improvement by enlarging the fracture length is observed after a certain production duration. Through the production process, secondary hydrate formation is absent in the fracture, and the high conductivity in the fracture is maintained. The results indicate that the increase in fracture conductivity has a limited effect on enhancing gas production.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jianfeng Xiao ◽  
Xianzhe Ke ◽  
Hongxuan Wu

After multistage hydraulic fracturing of shale gas reservoir, a complex fracture network is formed near the horizontal wellbore. In postfracturing flowback and early-time production period, gas and water two-phase flow usually occurs in the hydraulic fracture due to the retention of a large amount of fracturing fluid in the fracture. In order to accurately interpret the key parameters of hydraulic fracture network, it is necessary to establish a production decline analysis method considering fracturing fluid flowback in shale gas reservoirs. On this basis, an uncertain fracture network model was established by integrating geological, fracturing treatment, flowback, and early-time production data. By identifying typical flow-regimes and correcting the fracture network model with history matching, a set of production decline analysis and fracture network interpretation method with consideration of fracturing fluid flowback in shale gas reservoir was formed. Derived from the case analysis of a typical fractured horizontal well in shale gas reservoirs, the interpretation results show that the total length of hydraulic fractures is 4887.6 m, the average half-length of hydraulic fracture in each stage is 93.4 m, the average fracture conductivity is 69.7 mD·m, the stimulated reservoir volume (SRV) is 418 × 10 4   m 3 , and the permeability of SRV is 5.2 × 10 − 4   mD . Compared with the interpretation results from microseismic monitoring data, the effective hydraulic fracture length obtained by integrated fracture network interpretation method proposed in this paper is 59% of that obtained from the microseismic monitoring data, and the effective SRV is 83% of that from the microseismic monitoring data. The results show that the fracture length is smaller and the fracture conductivity is larger without considering the influence of fracturing fluid.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ali Mahmoud ◽  
Ahmed Gowida ◽  
Murtada Saleh Aljawad ◽  
Mustafa Al-Ramadan ◽  
Ahmed Farid Ibrahim

Multistage hydraulic fracturing is a technique to extract hydrocarbon from tight and unconventional reservoirs. Although big advancements occurred in this field, understanding of the created fractures location, size, complexity, and proppant distribution is in its infancy. This study provides the recent advances in the methods and techniques used to diagnose hydraulic fractures in unconventional formations. These techniques include tracer flowback analysis, fiber optics such as distributed temperature sensing (DTS) and distributed acoustic sensing (DAS), tiltmeters, microseismic monitoring, and diagnostic fracture injection tests (DFIT). These techniques are used to estimate the fracture length, height, width, complexity, azimuth, cluster efficiency, fracture spacing between laterals, and proppant distribution. Each technique has its advantages and limitations, while integrating more than one technique in fracture diagnostics might result in synergies, leading to a more informative fracture description. DFIT analysis is critical and subjected to the interpreter’s understanding of the process and the formation properties. Hence, the applications of machine learning in fracture diagnostics and DFIT analysis were discussed. The current study presents an extensive review and comparison between different multistage fracture diagnostic methods, and their applicability is provided. The advantages and the limitations of each technique were highlighted, and the possible areas of future research were suggested.


2021 ◽  
Author(s):  
Albert Vainshtein ◽  
Georgii Fisher ◽  
Gleb Strizhnev ◽  
Sergei Boronin ◽  
Andrei Osiptsov ◽  
...  

Abstract We present the results of field experiments campaign on start-up of wells located in a sandstone oilfield of Western Siberia and history matching of coupled "wellbore-hydraulic fracture" model describing well start-up and fracture clean-up. The conclusion is made about the impact of rheological and geomechanical factors on the well cumulative production andfracture conductivity.The results are generalized for four wells of the field experiment and 30 wells of the retrospective analysis. Calculations of well startup are carried out using standalone fracture cleanup model and the coupled model, which includes models for filtration inside closed hydraulic fracture and flow in the wellbore. The data obtained during field tests on well startup is used to history match the fracture clean-up model. The adaptation allows to evaluate the sensitivity of well production to various physical parameters and find the safe operating envelope of operational parameters during well startup. Numerical simulations allow take into account geomechanics effectsand rheology properties of fracturing fluid, study the dynamics of effective (cleaned) fracture length as well as evaluate the influence of pressure drop dynamics on filtration properties of the fracture and cumulative well production. We extended the number of wells to study the impact of flowback scenarios on production andgeneralized the results of our previous study.Key parameters affecting the history match process of the mathematical model are determined,the uncertainty associated with fluid rheology is reduced. Using the history-matched model, we evaluated geomechanics effects on fracture degradation depending on bottom-hole pressure drop dynamics. Based on the obtained dynamics of dimensionless parameters, such as pressure and fracture productivity, we propose an optimized well start-up strategy aimed at maximizing effective fracture length and cumulative production. Additionally, we visualized the dynamics of fracture conductivity distribution along its length. The obtained results are consistent with interpretation of physical processes accompanying well start-up and fracture clean-up. Dimensionless productivity index is chosen to quantify the effects of geomechanics and fluid rheology on well production.On the basis of matched mathematical model, we predict a potential increase in production of the well with optimized start-up.The recommendations are presented in the form of the dynamics of wellhead choke opening and a sequence of choke diameters. We propose an integrated approach for planning a well flowback strategy after multi-stage hydraulic fracturing. The proposed decision-making algorithm considers the effects of geomechanics and yield-stress hydraulic fracturing fluid rheology on cumulative production. It allows to develop a design for the well start-up and fracture cleanup in terms of dynamics of wellheadchoke opening.


2021 ◽  
Author(s):  
Alexander Sergeevich Koplik ◽  
Semen Sergeevich Kudrya ◽  
Denis Alekseevich Zolnikov ◽  
Rustam Albertovich Koltsov ◽  
Alexey Vasilievich Kovalevskiy

Abstract Executive Summary The recently developed Samotlor 2020 campaign includes a requirement to shift the Frac design to synthetic gelling agent (gellant) which would increase production, keep the reservoir clean and also reduce both capital and operational costs for each stage Frac stage (no need to heat up the water, an option to use the well water, no requirement to miniFrac performance, etc.). The key difference between guar-based gels and synthetic gels is a lower viscosity rating that results in a significant increase in the fracture length and an improved ability to transport high concentration of proppant due to its thixotropic properties (the ability of a substance to lower its viscosity as a result of a mechanical impact and grow its viscosity when still). When gel is destroyed throughout the fracture after the Frac is completed the synthetic option allows for a cleaner fracture and helps remove all residual matter from the fracture. Another important consideration is that guar shipments from India make Russian oil vulnerable to price, foreign exchange and availability fluctuations. If guar crops experience a bad year or Indian farmers determine that the market should be refocused on cotton or other areas (i.e. not guar), the guar prices in Russian would likely skyrocket. The authors worked as a team to come up with a list of clear recommendations to develop both new and existing wells for Lower Cretaceous collectors of the Vartovsk and Megion suites such as AV1 (1-2) and BV8(0) to increase production and reduce capital costs. We have determined that Frac fluids based on synthetic modified polyacrylamide start to come to the front and hold a leading position in the area of production stimulation as previously happened to other effective methods such as polymer water flooding, drilling and cementing applications.


Sign in / Sign up

Export Citation Format

Share Document