fracture aperture
Recently Published Documents


TOTAL DOCUMENTS

278
(FIVE YEARS 124)

H-INDEX

28
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Zhi-Hao Dong ◽  
Xiaohua Pan ◽  
Chao-Sheng Tang ◽  
Bin Shi

Abstract Rock weathering fractures in nature are complex and fracture healing is an effective strategy for rock weathering mitigation. This study is a first attempt to apply microbially induced calcium carbonate precipitation (MICP) technology in the healing of nature-weathering-like rough fractures (NWLRF). Sandstone was studied as an example due to it is a wide-spread construction, sculpture and monuments material all over the world. In order to achieve a high healing efficiency, a repeated mixture injection strategy was proposed. Based on a series of laboratory MICP injection experiments on four types of NWLRF, we systematically explored the fundamental micro-healing mechanism and the influence of factors including fracture aperture, characteristics of branch fractures, and cementation solution concentration. Experimental results demonstrated that MICP healing with the repeated mixture injection strategy had the ability to efficiently heal the penetrated NWLRF well with length in centimeter-scale and aperture in millimeter-scale, but cannot heal the non-penetrated branch fractures under low injection pressure. The repeated mixture injection strategy furtherly achieved a high apparent fracture healing ratio and a significant reduction of transmissivity. The apparent fracture healing ratios of all main fractures were higher than 80% and the maximum was 99.1%. Fracture transmissivity was reduced by at least three orders of magnitude from about 1×10-4 m2/s to less than 1×10-7 m2/s, and the highest reduction reached to four orders. For the aspect of the effects, larger cementation solution concentration, finer aperture and the existing of penetrated branch fracture were beneficial to improve the healing effect. Moreover, the MICP healing mechanism with high fracture healing ratio and significant reduction of transmissivity on sandstone NWLRF was also analyzed. The research results have important theoretical significance and technical guidance value for the disaster prevention and mitigation of rock weathering.


2021 ◽  
Vol 12 (1) ◽  
pp. 180
Author(s):  
Jan Vinogradov ◽  
Miftah Hidayat ◽  
Yogendra Kumar ◽  
David Healy ◽  
Jean-Christophe Comte

Despite the broad range of interest and possible applications, the controls on the electric surface charge and the zeta potential of gneiss at conditions relevant to naturally fractured systems remain unreported. There are no published zeta potential measurements conducted in such systems at equilibrium, hence, the effects of composition, concentration and pressure remain unknown. This study reports zeta potential values for the first time measured in a fractured Lewisian gneiss sample saturated with NaCl solutions of various concentrations, artificial seawater and artificial groundwater solutions under equilibrium conditions at confining pressures of 4 MPa and 7 MPa. The constituent minerals of the sample were identified using X-ray diffraction and linked to the concentration and composition dependence of the zeta potential. The results reported in this study demonstrate that the zeta potential remained negative for all tested solutions and concentrations. However, the values of the zeta potential of our Lewisian gneiss sample were found to be unique and dissimilar to pure minerals such as quartz, calcite, mica or feldspar. Moreover, the measured zeta potentials were smaller in magnitude in the experiments with artificial complex solutions compared with those measured with NaCl, thus suggesting that divalent ions (Ca2+, Mg2+ and SO42−) acted as potential determining ions. The zeta potential was also found to be independent of salinity in the NaCl experiments, which is unusual for most reported data. We also investigated the impact of fracture aperture on the electrokinetic response and found that surface electrical conductivity remained negligibly small across the range of the tested confining pressures. Our novel results are an essential first step for interpreting field self-potential (SP) signals and facilitate a way forward for characterization of water flow through fractured basement aquifers.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 20
Author(s):  
George L. Danko ◽  
M. K. Baracza

A new EGS arrangement, Robust EGS (REGS), is studied for its potential benefits for wide-spread applications for clean, carbon-free, electrical energy generation. Numerical simulations are carried out to prove the key benefit of REGS in a simple, but effective, geologic heat exchanger arrangement with large, stabilized fracture aperture and controlled flow zones. The numerical model results show the estimated potential energy capacity and the converted value to electrical energy generation over a 30-year operation time period for two simple REGS arrangements. The results may assist EGS investors and drilling companies in deciding whether the investment and operation can be made profitable for the wide-scale application of REGS for green energy generation.


2021 ◽  
Author(s):  
Aishah Khalid Abdullah ◽  
Bhaskar Chakrabarti ◽  
Anas Mansor Al-Rukaibi ◽  
Talal Fahad Hadi Al-Adwani ◽  
Khushboo Havelia ◽  
...  

Abstract The State of Kuwait is currently appraising and successfully developing the tight carbonates reservoirs of Jurassic age, which have very low matrix porosity and permeability. These reservoirs are affected by several tectonic events of faulting and folding, resulting in the development of interconnected natural fractures, which provide effective permeability to the reservoirs in form of production sweet spots. The objective of the study was to characterize the natural fractures and identify high permeability sweet spots as being appraisal drilling locations in a discovered field with tight carbonate reservoirs. An integrated approach was undertaken for building a discrete fracture network model by characterizing the developed faulting- and folding-related fractures and combining all subsurface data from multiple domains. The reservoir structure has a doubly plunging anticline at the field level that is affected by several strike-slip faults. The faulting-related fractures were characterized by generating multiple structural seismic attributes, highlighting subsurface discontinuities and fracture corridors. The folding-related fractures were modelled using structural restoration techniques by computing stresses resulting from the anticlinal folding. The fracture model was built in addition to the 3D matrix property model for this tight carbonate reservoir, resulting in a dual-porosity-permeability static model. Analogue data was used to compute fracture aperture and expected fracture porosity and permeability, to identify the sweet spots. Structural seismic attributes such as Ant Tracking and Consistent Dip were successful in highlighting and identifying the fault lineaments and fracture corridors. The seismic discontinuities were validated using the fractures interpreted in the image log data from the predrilled wells before being input into the fracture model. Paleo stresses, derived from structural restoration, were combined with the reservoir facies and geomechanical properties to gain important insight into predicting fractures developed due to folding. Several fracture aperture scenarios were run to capture the uncertainty associated with the computed fracture porosity and permeability. Based on the results, several sweet spots were identified, which were ranked based on their extent and connected volumes of the various permeability cases. Identifying these sweet spots helped make informed decisions regarding well planning and drilling sequence. High-inclination wells aligned parallel to the present-day maximum stress direction were proposed, which would cut across corridors of the predicted open fractures. Through this study, comprehensive fracture characterization and fracture permeability understanding of the tight carbonates in the field under study were successfully achieved. This workflow will be useful in exploratory or appraisal fields with tight carbonate reservoirs.


Author(s):  
Karsten Osenbrück ◽  
Eva Blendinger ◽  
Carsten Leven ◽  
Hermann Rügner ◽  
Michael Finkel ◽  
...  

AbstractNitrate reduction constitutes an important natural mechanism to mitigate the widespread and persistent nitrate contamination of groundwater resources. In fractured aquifers, however, the abundance and accessibility of electron donors and their spatial correlation with groundwater flow paths are often poorly understood. In this study, the nitrate reduction potential of a fractured carbonate aquifer in the Upper Muschelkalk of SW Germany was investigated, where denitrification is due to the oxidation of ferrous iron and reduced sulfur. Petrographical analyses of rock samples revealed concentrations of syn-sedimentary and diagenetically formed pyrite ranging from 1 to 4 wt.% with only small differences between different facies types. Additional ferrous iron is available in saddle dolomites (up to 2.6 wt.%), which probably were formed by tectonically induced percolation of low-temperature hydrothermal fluids. Borehole logging at groundwater wells (flowmeter, video, gamma) indicates that most groundwater flow occurs along karstified bedding planes partly located within dolomites of the shoal and backshoal facies. The high porosity (15–30%) of these facies facilitates molecular diffusive exchange of solutes between flow paths in the fractures and the reactive minerals in the pore matrix. The high-porosity facies together with hydraulically active fractures featuring pyrite or saddle dolomite precipitates constitute the zones of highest nitrate reduction potential within the aquifer. Model-based estimates of electron acceptor/donor balances indicate that the nitrate reduction potential protecting water supply wells increases with increasing porosity of the rock matrix and decreases with increasing hydraulic conductivity (or effective fracture aperture) and spacing of the fracture network.


2021 ◽  
Vol 9 ◽  
Author(s):  
Dezhi Qiu ◽  
Jun Zhang ◽  
Yinhe Lin ◽  
Jinchuan Liu ◽  
Minou Rabiei ◽  
...  

Accurate prediction of the fracture geometry before the operation of a hydraulic fracture (HF) job is important for the treatment design. Simplified planar fracture models, which may be applicable to predict the fracture geometry in homogeneous and continuous formations, fail in case of fractured reservoirs and laminated formations such as shales. To gain a better understanding of the fracture propagation mechanism in laminated formations and their vertical geometry to be specific, a series of numerical models were run using XSite, a lattice-based simulator. The results were studied to understand the impact of the mechanical properties of caprock and injection parameters on HF propagation. The tensile and shear stimulated areas were used to determine the ability of HF to propagate vertically and horizontally. The results indicated that larger caprock Young’s modulus increases the stimulated area (SA) in both vertical and horizontal directions, whereas it reduces the fracture aperture. Also, larger vertical stress anisotropy and tensile strength of caprock and natural interfaces inhibit the horizontal fracture propagation with an inconsiderable effect in vertical propagation, which collectively reduces the total SA. It was also observed that an increased fluid injection rate suppresses vertical fracture propagation with an insignificant effect on horizontal propagation. The dimensionless parameters defined in this study were used to characterize the transition of HF propagation behavior between horizontal and vertical HFs.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xu Zhou ◽  
Qingfu Zhang ◽  
Hongchuan Xing ◽  
Jianrong Lv ◽  
Haibin Su ◽  
...  

Acidizing technology is an effective reformation method of oil and gas reservoirs. It can also remove the reservoir pollution near wellbore zones and enhance the fluid transmissibility. The optimal injection rate of acid is one of the key factors to reduce cost and improve the effect of acidizing. Therefore, the key issue is to find the optimal injection rate during acid corrosion in fractured carbonate rock. In this work, a novel reactive flow mathematical model based on two-scale model and discrete fracture model is established for fractured carbonate reservoirs. The matrix and fracture are described by a two-scale model and a discrete fracture model, respectively. Firstly, the two-scale model for matrix is combined with the discrete fracture model. Then, an efficient numerical scheme based on the finite element method is implemented to solve the corresponding dimensionless equations. Finally, several important aspects, such as the influence of the injection rate of acid on the dissolution patterns, the influence of fracture aperture and fracture orientations on the dissolution structure, the breakthrough volume of injected acid, and the dynamic change of fracture aperture during acidizing, are analyzed. The numerical simulation results show that there is an optimal injection rate in fractured carbonate rock. However, the fractures do not have an impact on the optimal acid injection rate, they only have an impact on the dissolution structure.


2021 ◽  
Vol 56 ◽  
pp. 117-128
Author(s):  
Ajay K. Sahu ◽  
Ankur Roy

Abstract. While fractal models are often employed for describing the geometry of fracture networks, a constant aperture is mostly assigned to all the fractures when such models are flow simulated. In nature however, almost all fracture networks exhibit variable aperture values and it is this fracture aperture that controls the conductivity of individual fractures as described by the well-known cubic-law. It would therefore be of practical interest to investigate flow patterns in a fractal-fracture network where the apertures scale in accordance to their position in the hierarchy of the fractal. A set of synthetic fractal-fracture networks and two well-connected natural fracture maps that belong to the same fractal system are used for this purpose. A set of dominant sub-networks are generated from a given fractal-fracture map by systematically removing the smaller fracture segments with narrow apertures. The connectivity values of the fractal-fracture networks and their respective dominant sub-networks are then computed. Although a large number of fractures with smaller aperture are eliminated, no significant decrease is seen in the connectivity of the dominant sub-networks. A streamline simulator based on Darcy's law is used for flow simulating the fracture networks, which are conceptualized as two-dimensional fracture continuum models. A single high porosity value is assigned to all the fractures. The permeability assigned to fractures within the continuum model is based on their aperture values and there is nearly no matrix porosity and permeability. The recovery profiles and time-of-flight plots for each network and its dominant sub-networks at different time steps are compared. The results from both the synthetic networks and the natural data show that there is no significant decrease in fluid recovery in the dominant sub-networks compared to their respective parent fractal-fracture networks. It may therefore be concluded that in the case of such hierarchical fractal-fracture systems with scaled aperture, the smaller fractures do not significantly contribute to connectivity or fluid flow. In terms of decision making, this result will aid geoscientists and engineers in identifying only those fractures that ultimately matter in evaluating the flow recovery, thus building models that are computationally less expensive while being geologically realistic.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Gang Chen ◽  
Ling Ma ◽  
Hongsheng Gong ◽  
Fengqiang Luo

The seepage performance of a rock mass mainly depends on the rock fractures developed in it. Numerical calculation method is a common method to study the permeability properties of fractures. Seepage in rock fractures is affected by various factors such as fracture aperture, roughness, and filling, among which aperture and roughness are the two most widely influenced factors. The Navier-Stokes (NS) equation can be solved directly for the seepage flow in rock fractures with good accuracy, but there are problems of large computational volume and slow solution speed. In this paper, the fracture aperture space data is substituted into the local cubic law as an aperture function to form a numerical calculation method for seepage in rough rock fractures, namely, the aperture function method (AFM). Comparing with the physical seepage experiments of rock fractures, the calculation results of AFM will produce a small amount of error under the low Reynolds number condition, but it can greatly improve the calculation efficiency. The high efficiency of calculation makes it possible to apply AFM to the calculation of large-scale 3D rough fracture network models. The pressure drop of fluid in the fracture has viscous pressure drop (VPD) and local pressure drop (LPD). VPD can be calculated using the AFM. After analyzing the results of solving the NS equation for fracture seepage, it is concluded that the LPD includes the pressure drop caused by area crowding in the recirculation zone (RZ), kinetic energy loss in the RZ, kinetic energy loss in the vortices, and other reasons.


Sign in / Sign up

Export Citation Format

Share Document