A CONSTRUCTION OF THE SCRAMBLED SET WITH FULL HAUSDORFF DIMENSION FOR BETA-TRANSFORMATIONS

Fractals ◽  
2018 ◽  
Vol 26 (01) ◽  
pp. 1850005
Author(s):  
WEI-BIN LIU ◽  
CHENG HUANG ◽  
MEI-HUA LI ◽  
SHUAILING WANG

For beta-transformations, we prove that the Lebesgue measure of any measurable scrambled set is zero, and there exists a scrambled set with full Hausdorff dimension.

Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1546
Author(s):  
Mohsen Soltanifar

How many fractals exist in nature or the virtual world? In this paper, we partially answer the second question using Mandelbrot’s fundamental definition of fractals and their quantities of the Hausdorff dimension and Lebesgue measure. We prove the existence of aleph-two of virtual fractals with a Hausdorff dimension of a bi-variate function of them and the given Lebesgue measure. The question remains unanswered for other fractal dimensions.


1970 ◽  
Vol 13 (1) ◽  
pp. 59-64 ◽  
Author(s):  
David W. Boyd

If U is an open set in Euclidean N-space EN which has finite Lebesgue measure |U| then a complete packing of U by open spheres is a collection C={Sn} of pairwise disjoint open spheres contained in U and such that Σ∞n=1|Sn| = |U|. Such packings exist by Vitali's theorem. An osculatory packing is one in which the spheres Sn are chosen recursively so that from a certain point on Sn+1 is the largest possible sphere contained in (Here S- will denote the closure of a set S). We give here a simple proof of the "well-known" fact that an osculatory packing is a complete packing. Our method of proof shows also that for osculatory packings, the Hausdorff dimension of the residual set is dominated by the exponent of convergence of the radii of the Sn.


2017 ◽  
Vol 38 (5) ◽  
pp. 1627-1641
Author(s):  
SIMON BAKER

Let $\unicode[STIX]{x1D6FD}\in (1,2)$ be a real number. For a function $\unicode[STIX]{x1D6F9}:\mathbb{N}\rightarrow \mathbb{R}_{\geq 0}$, define $W_{\unicode[STIX]{x1D6FD}}(\unicode[STIX]{x1D6F9})$ to be the set of $x\in \mathbb{R}$ such that for infinitely many $n\in \mathbb{N},$ there exists a sequence $(\unicode[STIX]{x1D716}_{i})_{i=1}^{n}\in \{0,1\}^{n}$ satisfying $0\leq x-\sum _{i=1}^{n}(\unicode[STIX]{x1D716}_{i}/\unicode[STIX]{x1D6FD}^{i})\leq \unicode[STIX]{x1D6F9}(n)$. In Baker [Approximation properties of $\unicode[STIX]{x1D6FD}$-expansions. Acta Arith. 168 (2015), 269–287], the author conjectured that for Lebesgue almost every $\unicode[STIX]{x1D6FD}\in (1,2)$, the condition $\sum _{n=1}^{\infty }2^{n}\unicode[STIX]{x1D6F9}(n)=\infty$ implies that $W_{\unicode[STIX]{x1D6FD}}(\unicode[STIX]{x1D6F9})$ is of full Lebesgue measure within $[0,1/(\unicode[STIX]{x1D6FD}-1)]$. In this paper we make a significant step towards proving this conjecture. We prove that given a sequence of positive real numbers $(\unicode[STIX]{x1D714}_{n})_{n=1}^{\infty }$ satisfying $\lim _{n\rightarrow \infty }\unicode[STIX]{x1D714}_{n}=\infty$, for Lebesgue almost every $\unicode[STIX]{x1D6FD}\in (1.497,\ldots ,2)$, the set $W_{\unicode[STIX]{x1D6FD}}(\unicode[STIX]{x1D714}_{n}\cdot 2^{-n})$ is of full Lebesgue measure within $[0,1/(\unicode[STIX]{x1D6FD}-1)]$. We also study the case where $\sum _{n=1}^{\infty }2^{n}\unicode[STIX]{x1D6F9}(n)<\infty$ in which the set $W_{\unicode[STIX]{x1D6FD}}(\unicode[STIX]{x1D6F9})$ has Lebesgue measure zero. Applying the mass transference principle developed by Beresnevich and Velani in [A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2) 164(3) (2006), 971–992], we obtain some results on the Hausdorff dimension and the Hausdorff measure of $W_{\unicode[STIX]{x1D6FD}}(\unicode[STIX]{x1D6F9})$.


2015 ◽  
Vol 158 (3) ◽  
pp. 419-437 ◽  
Author(s):  
BAO-WEI WANG ◽  
JUN WU ◽  
JIAN XU

AbstractWe generalise the mass transference principle established by Beresnevich and Velani to limsup sets generated by rectangles. More precisely, let {xn}n⩾1 be a sequence of points in the unit cube [0, 1]d with d ⩾ 1 and {rn}n⩾1 a sequence of positive numbers tending to zero. Under the assumption of full Lebesgue measure theoretical statement of the set \begin{equation*}\big\{x\in [0,1]^d: x\in B(x_n,r_n), \ {{\rm for}\, {\rm infinitely}\, {\rm many}}\ n\in \mathbb{N}\big\},\end{equation*} we determine the lower bound of the Hausdorff dimension and Hausdorff measure of the set \begin{equation*}\big\{x\in [0,1]^d: x\in B^{a}(x_n,r_n), \ {{\rm for}\, {\rm infinitely}\, {\rm many}}\ n\in \mathbb{N}\big\},\end{equation*} where a = (a1, . . ., ad) with 1 ⩽ a1 ⩽ a2 ⩽ . . . ⩽ ad and Ba(x, r) denotes a rectangle with center x and side-length (ra1, ra2,. . .,rad). When a1 = a2 = . . . = ad, the result is included in the setting considered by Beresnevich and Velani.


2020 ◽  
pp. 1-33
Author(s):  
PIETER ALLAART ◽  
DERONG KONG

Fix an alphabet $A=\{0,1,\ldots ,M\}$ with $M\in \mathbb{N}$ . The univoque set $\mathscr{U}$ of bases $q\in (1,M+1)$ in which the number $1$ has a unique expansion over the alphabet $A$ has been well studied. It has Lebesgue measure zero but Hausdorff dimension one. This paper describes how the points in the set $\mathscr{U}$ are distributed over the interval $(1,M+1)$ by determining the limit $$\begin{eqnarray}f(q):=\lim _{\unicode[STIX]{x1D6FF}\rightarrow 0}\dim _{\text{H}}(\mathscr{U}\cap (q-\unicode[STIX]{x1D6FF},q+\unicode[STIX]{x1D6FF}))\end{eqnarray}$$ for all $q\in (1,M+1)$ . We show in particular that $f(q)>0$ if and only if $q\in \overline{\mathscr{U}}\backslash \mathscr{C}$ , where $\mathscr{C}$ is an uncountable set of Hausdorff dimension zero, and $f$ is continuous at those (and only those) points where it vanishes. Furthermore, we introduce a countable family of pairwise disjoint subsets of $\mathscr{U}$ called relative bifurcation sets, and use them to give an explicit expression for the Hausdorff dimension of the intersection of $\mathscr{U}$ with any interval, answering a question of Kalle et al [On the bifurcation set of unique expansions. Acta Arith. 188 (2019), 367–399]. Finally, the methods developed in this paper are used to give a complete answer to a question of the first author [On univoque and strongly univoque sets. Adv. Math.308 (2017), 575–598] on strongly univoque sets.


2014 ◽  
Vol 91 (1) ◽  
pp. 34-40 ◽  
Author(s):  
YUEHUA GE ◽  
FAN LÜ

AbstractWe study the distribution of the orbits of real numbers under the beta-transformation$T_{{\it\beta}}$for any${\it\beta}>1$. More precisely, for any real number${\it\beta}>1$and a positive function${\it\varphi}:\mathbb{N}\rightarrow \mathbb{R}^{+}$, we determine the Lebesgue measure and the Hausdorff dimension of the following set:$$\begin{eqnarray}E(T_{{\it\beta}},{\it\varphi})=\{(x,y)\in [0,1]\times [0,1]:|T_{{\it\beta}}^{n}x-y|<{\it\varphi}(n)\text{ for infinitely many }n\in \mathbb{N}\}.\end{eqnarray}$$


2012 ◽  
Vol 28 (1) ◽  
pp. 15-23 ◽  
Author(s):  
Jaroslav Hančl ◽  
Jan Šustek ◽  
Alena Jaššová

1998 ◽  
Vol 08 (10) ◽  
pp. 1957-1973 ◽  
Author(s):  
Jun Hu

In this paper we put some techniques and methods of [Misurewicz, 1979; Hu & Sullivan, 1997; Hu & Tresser, 1998; Blokh & Lyubich, 1990; Martens et al., 1992] together to show that if a map f, from an interval I into itself with finitely many turning points, satisfies a new smooth regularity in [Hu & Sullivan, 1997] and is on the boundary of chaos, and if μ is an ergodic f-invariant probability measure on I which is not concentrated on a periodic orbit of f, then the support K of μ is a Cantor set of bounded geometry, and hence has Lebesgue measure 0 and Hausdorff dimension strictly between 0 and 1. We also include some natural examples which satisfy this new smooth regularity rather than the traditional ones.


Author(s):  
Bo Tan ◽  
Qinglong Zhou

For [Formula: see text] let [Formula: see text] be its Lüroth expansion and [Formula: see text] be the sequence of convergents of [Formula: see text] Define the sets [Formula: see text] [Formula: see text] and [Formula: see text] where [Formula: see text] is a positive function. In this paper, we calculate the Lebesgue measure of the set [Formula: see text] and the Hausdorff dimension of the sets [Formula: see text] and [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document