Dimension theory of the product of partial quotients in Lüroth expansions

Author(s):  
Bo Tan ◽  
Qinglong Zhou

For [Formula: see text] let [Formula: see text] be its Lüroth expansion and [Formula: see text] be the sequence of convergents of [Formula: see text] Define the sets [Formula: see text] [Formula: see text] and [Formula: see text] where [Formula: see text] is a positive function. In this paper, we calculate the Lebesgue measure of the set [Formula: see text] and the Hausdorff dimension of the sets [Formula: see text] and [Formula: see text].

2014 ◽  
Vol 91 (1) ◽  
pp. 34-40 ◽  
Author(s):  
YUEHUA GE ◽  
FAN LÜ

AbstractWe study the distribution of the orbits of real numbers under the beta-transformation$T_{{\it\beta}}$for any${\it\beta}>1$. More precisely, for any real number${\it\beta}>1$and a positive function${\it\varphi}:\mathbb{N}\rightarrow \mathbb{R}^{+}$, we determine the Lebesgue measure and the Hausdorff dimension of the following set:$$\begin{eqnarray}E(T_{{\it\beta}},{\it\varphi})=\{(x,y)\in [0,1]\times [0,1]:|T_{{\it\beta}}^{n}x-y|<{\it\varphi}(n)\text{ for infinitely many }n\in \mathbb{N}\}.\end{eqnarray}$$


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1546
Author(s):  
Mohsen Soltanifar

How many fractals exist in nature or the virtual world? In this paper, we partially answer the second question using Mandelbrot’s fundamental definition of fractals and their quantities of the Hausdorff dimension and Lebesgue measure. We prove the existence of aleph-two of virtual fractals with a Hausdorff dimension of a bi-variate function of them and the given Lebesgue measure. The question remains unanswered for other fractal dimensions.


Author(s):  
Shuyi Lin ◽  
Jinjun Li ◽  
Manli Lou

Let [Formula: see text] denote the largest digit of the first [Formula: see text] terms in the Lüroth expansion of [Formula: see text]. Shen, Yu and Zhou, A note on the largest digits in Luroth expansion, Int. J. Number Theory 10 (2014) 1015–1023 considered the level sets [Formula: see text] and proved that each [Formula: see text] has full Hausdorff dimension. In this paper, we investigate the Hausdorff dimension of the following refined exceptional set: [Formula: see text] and show that [Formula: see text] has full Hausdorff dimension for each pair [Formula: see text] with [Formula: see text]. Combining the two results, [Formula: see text] can be decomposed into the disjoint union of uncountably many sets with full Hausdorff dimension.


Fractals ◽  
2018 ◽  
Vol 26 (01) ◽  
pp. 1850005
Author(s):  
WEI-BIN LIU ◽  
CHENG HUANG ◽  
MEI-HUA LI ◽  
SHUAILING WANG

For beta-transformations, we prove that the Lebesgue measure of any measurable scrambled set is zero, and there exists a scrambled set with full Hausdorff dimension.


Author(s):  
Xiaoyan Tan ◽  
Jia Liu ◽  
Zhenliang Zhang

For any [Formula: see text] in [Formula: see text], let [Formula: see text] be the Lüroth expansion of [Formula: see text]. In this paper, we study the relative convergence speed of its convergents [Formula: see text] to the rate of growth of digits in the Lüroth expansion of an irrational number. For any [Formula: see text] in [Formula: see text], the sets [Formula: see text] and [Formula: see text] are proved to be of same Hausdorff dimension [Formula: see text]. Furthermore, for any [Formula: see text] in [Formula: see text] with [Formula: see text], the Hausdorff dimension of the set [Formula: see text] [Formula: see text] is proved to be either [Formula: see text] or [Formula: see text] according as [Formula: see text] or not.


1970 ◽  
Vol 13 (1) ◽  
pp. 59-64 ◽  
Author(s):  
David W. Boyd

If U is an open set in Euclidean N-space EN which has finite Lebesgue measure |U| then a complete packing of U by open spheres is a collection C={Sn} of pairwise disjoint open spheres contained in U and such that Σ∞n=1|Sn| = |U|. Such packings exist by Vitali's theorem. An osculatory packing is one in which the spheres Sn are chosen recursively so that from a certain point on Sn+1 is the largest possible sphere contained in (Here S- will denote the closure of a set S). We give here a simple proof of the "well-known" fact that an osculatory packing is a complete packing. Our method of proof shows also that for osculatory packings, the Hausdorff dimension of the residual set is dominated by the exponent of convergence of the radii of the Sn.


2017 ◽  
Vol 38 (5) ◽  
pp. 1627-1641
Author(s):  
SIMON BAKER

Let $\unicode[STIX]{x1D6FD}\in (1,2)$ be a real number. For a function $\unicode[STIX]{x1D6F9}:\mathbb{N}\rightarrow \mathbb{R}_{\geq 0}$, define $W_{\unicode[STIX]{x1D6FD}}(\unicode[STIX]{x1D6F9})$ to be the set of $x\in \mathbb{R}$ such that for infinitely many $n\in \mathbb{N},$ there exists a sequence $(\unicode[STIX]{x1D716}_{i})_{i=1}^{n}\in \{0,1\}^{n}$ satisfying $0\leq x-\sum _{i=1}^{n}(\unicode[STIX]{x1D716}_{i}/\unicode[STIX]{x1D6FD}^{i})\leq \unicode[STIX]{x1D6F9}(n)$. In Baker [Approximation properties of $\unicode[STIX]{x1D6FD}$-expansions. Acta Arith. 168 (2015), 269–287], the author conjectured that for Lebesgue almost every $\unicode[STIX]{x1D6FD}\in (1,2)$, the condition $\sum _{n=1}^{\infty }2^{n}\unicode[STIX]{x1D6F9}(n)=\infty$ implies that $W_{\unicode[STIX]{x1D6FD}}(\unicode[STIX]{x1D6F9})$ is of full Lebesgue measure within $[0,1/(\unicode[STIX]{x1D6FD}-1)]$. In this paper we make a significant step towards proving this conjecture. We prove that given a sequence of positive real numbers $(\unicode[STIX]{x1D714}_{n})_{n=1}^{\infty }$ satisfying $\lim _{n\rightarrow \infty }\unicode[STIX]{x1D714}_{n}=\infty$, for Lebesgue almost every $\unicode[STIX]{x1D6FD}\in (1.497,\ldots ,2)$, the set $W_{\unicode[STIX]{x1D6FD}}(\unicode[STIX]{x1D714}_{n}\cdot 2^{-n})$ is of full Lebesgue measure within $[0,1/(\unicode[STIX]{x1D6FD}-1)]$. We also study the case where $\sum _{n=1}^{\infty }2^{n}\unicode[STIX]{x1D6F9}(n)<\infty$ in which the set $W_{\unicode[STIX]{x1D6FD}}(\unicode[STIX]{x1D6F9})$ has Lebesgue measure zero. Applying the mass transference principle developed by Beresnevich and Velani in [A mass transference principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2) 164(3) (2006), 971–992], we obtain some results on the Hausdorff dimension and the Hausdorff measure of $W_{\unicode[STIX]{x1D6FD}}(\unicode[STIX]{x1D6F9})$.


2015 ◽  
Vol 158 (3) ◽  
pp. 419-437 ◽  
Author(s):  
BAO-WEI WANG ◽  
JUN WU ◽  
JIAN XU

AbstractWe generalise the mass transference principle established by Beresnevich and Velani to limsup sets generated by rectangles. More precisely, let {xn}n⩾1 be a sequence of points in the unit cube [0, 1]d with d ⩾ 1 and {rn}n⩾1 a sequence of positive numbers tending to zero. Under the assumption of full Lebesgue measure theoretical statement of the set \begin{equation*}\big\{x\in [0,1]^d: x\in B(x_n,r_n), \ {{\rm for}\, {\rm infinitely}\, {\rm many}}\ n\in \mathbb{N}\big\},\end{equation*} we determine the lower bound of the Hausdorff dimension and Hausdorff measure of the set \begin{equation*}\big\{x\in [0,1]^d: x\in B^{a}(x_n,r_n), \ {{\rm for}\, {\rm infinitely}\, {\rm many}}\ n\in \mathbb{N}\big\},\end{equation*} where a = (a1, . . ., ad) with 1 ⩽ a1 ⩽ a2 ⩽ . . . ⩽ ad and Ba(x, r) denotes a rectangle with center x and side-length (ra1, ra2,. . .,rad). When a1 = a2 = . . . = ad, the result is included in the setting considered by Beresnevich and Velani.


Author(s):  
JINHUA CHANG ◽  
HAIBO CHEN

AbstractLet 0 ⩽ α ⩽ ∞ and ψ be a positive function defined on (0, ∞). In this paper, we will study the level sets L(α, {ψ(n)}), B(α, {ψ(n)}) and T(α, {ψ(n)}) which are related respectively to the sequence of the largest digits among the first n partial quotients {Ln(x)}n≥1, the increasing sequence of the largest partial quotients {Bn(x)}n⩾1 and the sequence of successive occurrences of the largest partial quotients {Tn(x)}n⩾1 in the continued fraction expansion of x ∈ [0,1) ∩ ℚc. Under suitable assumptions of the function ψ, we will prove that the sets L(α, {ψ(n)}), B(α, {ψ(n)}) and T(α, {ψ(n)}) are all of full Hausdorff dimensions for any 0 ⩽ α ⩽ ∞. These results complement some limit theorems given by J. Galambos [4] and D. Barbolosi and C. Faivre [1].


2020 ◽  
pp. 1-33
Author(s):  
PIETER ALLAART ◽  
DERONG KONG

Fix an alphabet $A=\{0,1,\ldots ,M\}$ with $M\in \mathbb{N}$ . The univoque set $\mathscr{U}$ of bases $q\in (1,M+1)$ in which the number $1$ has a unique expansion over the alphabet $A$ has been well studied. It has Lebesgue measure zero but Hausdorff dimension one. This paper describes how the points in the set $\mathscr{U}$ are distributed over the interval $(1,M+1)$ by determining the limit $$\begin{eqnarray}f(q):=\lim _{\unicode[STIX]{x1D6FF}\rightarrow 0}\dim _{\text{H}}(\mathscr{U}\cap (q-\unicode[STIX]{x1D6FF},q+\unicode[STIX]{x1D6FF}))\end{eqnarray}$$ for all $q\in (1,M+1)$ . We show in particular that $f(q)>0$ if and only if $q\in \overline{\mathscr{U}}\backslash \mathscr{C}$ , where $\mathscr{C}$ is an uncountable set of Hausdorff dimension zero, and $f$ is continuous at those (and only those) points where it vanishes. Furthermore, we introduce a countable family of pairwise disjoint subsets of $\mathscr{U}$ called relative bifurcation sets, and use them to give an explicit expression for the Hausdorff dimension of the intersection of $\mathscr{U}$ with any interval, answering a question of Kalle et al [On the bifurcation set of unique expansions. Acta Arith. 188 (2019), 367–399]. Finally, the methods developed in this paper are used to give a complete answer to a question of the first author [On univoque and strongly univoque sets. Adv. Math.308 (2017), 575–598] on strongly univoque sets.


Sign in / Sign up

Export Citation Format

Share Document