THE NON-SPECTRAL PROPERTY OF A CLASS OF PLANAR SELF-SIMILAR MEASURES

Fractals ◽  
2020 ◽  
Vol 28 (05) ◽  
pp. 2050091
Author(s):  
YANG-YANG XU ◽  
JING-CHENG LIU

Let the self-similar measure [Formula: see text] be generated by an expanding real matrix [Formula: see text] and a digit set [Formula: see text] in space [Formula: see text]. In this paper, we only consider [Formula: see text] and the case [Formula: see text] is similar. We show that there exists an infinite orthogonal set of exponential functions in [Formula: see text] if and only if [Formula: see text] for some [Formula: see text] with [Formula: see text]. Furthermore, for the cases that [Formula: see text] does not admit any infinite orthogonal set of exponential functions, the exact cardinality of orthogonal exponential functions in [Formula: see text] is given.

Fractals ◽  
2019 ◽  
Vol 27 (03) ◽  
pp. 1950029 ◽  
Author(s):  
ZHI-MIN WANG ◽  
XIN-HAN DONG ◽  
ZHI-YONG WANG

For a positive integer [Formula: see text], let [Formula: see text]. Let the self-affine measure [Formula: see text] be generated by an expanding real matrix [Formula: see text] and a finite digit set [Formula: see text], where [Formula: see text] with [Formula: see text] and [Formula: see text] is the [Formula: see text]th column of the [Formula: see text] identical matrix [Formula: see text], [Formula: see text]. In this paper, we prove that [Formula: see text] contains an infinite orthogonal set of exponential functions if and only if there exists [Formula: see text] such that [Formula: see text] for some [Formula: see text] with [Formula: see text] and [Formula: see text].


2020 ◽  
Vol 32 (3) ◽  
pp. 673-681
Author(s):  
Ming-Liang Chen ◽  
Jing-Cheng Liu ◽  
Juan Su

AbstractLet the self-affine measure {\mu_{M,D}} be generated by an expanding real matrix {M=\operatorname{diag}(\rho_{1}^{-1},\rho_{2}^{-1})} and an integer digit set {D=\{(0,0)^{t},(\alpha_{1},\alpha_{2})^{t},(\beta_{1},\beta_{2})^{t}\}} with {\alpha_{1}\beta_{2}-\alpha_{2}\beta_{1}\neq 0}. In this paper, the sufficient and necessary conditions for {L^{2}(\mu_{M,D})} to contain an infinite orthogonal set of exponential functions are given.


2021 ◽  
pp. 2150004
Author(s):  
Ming-Liang Chen ◽  
Zhi-Hui Yan

In this paper, we study the spectral property of the self-affine measure [Formula: see text] generated by an expanding real matrix [Formula: see text] and the four-element digit set [Formula: see text]. We show that [Formula: see text] is a spectral measure, i.e. there exists a discrete set [Formula: see text] such that the collection of exponential functions [Formula: see text] forms an orthonormal basis for [Formula: see text], if and only if [Formula: see text] for some [Formula: see text]. A similar characterization for Bernoulli convolution is provided by Dai [X.-R. Dai, When does a Bernoulli convolution admit a spectrum? Adv. Math. 231(3) (2012) 1681–1693], over which [Formula: see text]. Furthermore, we provide an equivalent characterization for the maximal bi-zero set of [Formula: see text] by extending the concept of tree-mapping in [X.-R. Dai, X.-G. He and C. K. Lai, Spectral property of Cantor measures with consecutive digits, Adv. Math. 242 (2013) 187–208]. We also extend these results to the more general self-affine measures.


Fractals ◽  
2020 ◽  
Vol 28 (01) ◽  
pp. 2050016
Author(s):  
JUAN SU ◽  
ZHI-YONG WANG ◽  
MING-LIANG CHEN

For the self-affine measure [Formula: see text] generated by an expanding matrix [Formula: see text] and an integer digit set [Formula: see text] with [Formula: see text], Su et al. proved that if [Formula: see text], then [Formula: see text] contains an infinite orthogonal set of exponential functions if and only if [Formula: see text] [J. Su, Y. Liu and J. C. Liu, Non-spectrality of the planar self-affine measures with four-element digit sets, Fractals (2019), https://doi.org/10.1142/S0218348X19501159 ]. In this paper, we show that the above conclusion also holds for [Formula: see text]. So, a complete characterization of [Formula: see text] containing an infinite orthogonal set of exponential functions is given.


2020 ◽  
Vol 31 (08) ◽  
pp. 2050063
Author(s):  
Juan Su ◽  
Ming-Liang Chen

Let the self-affine measure [Formula: see text] be generated by an expanding matrix [Formula: see text] and a finite integer digit set [Formula: see text], where [Formula: see text] with [Formula: see text] and [Formula: see text]. In this paper, we show that if [Formula: see text] for an integer [Formula: see text], then [Formula: see text] admits an infinite orthogonal set of exponential functions if and only if there exists [Formula: see text] such that [Formula: see text] for some [Formula: see text] with [Formula: see text] and [Formula: see text].


2019 ◽  
Vol 63 (2) ◽  
pp. 318-327
Author(s):  
Ye Wang ◽  
Xin-Han Dong ◽  
Yue-Ping Jiang

AbstractSuppose that $0<|\unicode[STIX]{x1D70C}|<1$ and $m\geqslant 2$ is an integer. Let $\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70C},m}$ be the self-similar measure defined by $\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70C},m}(\cdot )=\frac{1}{m}\sum _{j=0}^{m-1}\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70C},m}(\unicode[STIX]{x1D70C}^{-1}(\cdot )-j)$. Assume that $\unicode[STIX]{x1D70C}=\pm (q/p)^{1/r}$ for some $p,q,r\in \mathbb{N}^{+}$ with $(p,q)=1$ and $(p,m)=1$. We prove that if $(q,m)=1$, then there are at most $m$ mutually orthogonal exponential functions in $L^{2}(\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70C},m})$ and $m$ is the best possible. If $(q,m)>1$, then there are any number of orthogonal exponential functions in $L^{2}(\unicode[STIX]{x1D707}_{\unicode[STIX]{x1D70C},m})$.


Fractals ◽  
2019 ◽  
Vol 27 (07) ◽  
pp. 1950115 ◽  
Author(s):  
JUAN SU ◽  
YAO LIU ◽  
JING-CHENG LIU

In this paper, we consider the non-spectrality of the planar self-affine measures [Formula: see text] generated by an expanding integer matrix [Formula: see text] and a four-element digit set [Formula: see text] We show that [Formula: see text] contains an infinite orthogonal set of exponential functions if and only if [Formula: see text]. Moreover, if [Formula: see text], then there exist at most [Formula: see text] mutually orthogonal exponential functions in [Formula: see text], and the number [Formula: see text] is the best.


Fractals ◽  
2019 ◽  
Vol 27 (04) ◽  
pp. 1950056 ◽  
Author(s):  
JIA ZHENG ◽  
JING-CHENG LIU ◽  
MING-LIANG CHEN

For the self-affine measures [Formula: see text] generated by a diagonal matrix [Formula: see text] with entries [Formula: see text] and the digit set [Formula: see text], Li showed that there exists an infinite orthogonal exponential functions set in [Formula: see text] if and only if at least two of the three numbers [Formula: see text] are even, and conjectured that there exist at most four mutually orthogonal exponential functions in [Formula: see text] for other cases [J.-L. Li, Non-spectrality of self-affine measures on the spatial Sierpinski gasket, J. Math. Anal. Appl. 432 (2015) 1005–1017]. This conjecture was disproved by Wang and Li through constructing a class of the eight-element orthogonal exponential functions [Q. Wang and J.-L. Li, There are eight-element orthogonal exponentials on the spatial Sierpinski gasket, Math. Nachr. 292 (2019) 211–226]. In this paper, we will show that there are any number of orthogonal exponential functions in [Formula: see text] if two of the three numbers [Formula: see text] are different odd and the other is even.


Fractals ◽  
2020 ◽  
Vol 28 (04) ◽  
pp. 2050059
Author(s):  
IANCU DIMA ◽  
RACHEL POPP ◽  
ROBERT S. STRICHARTZ ◽  
SAMUEL C. WIESE

We construct a surface that is obtained from the octahedron by pushing out four of the faces so that the curvature is supported in a copy of the Sierpinski gasket (SG) in each of them, and is essentially the self similar measure on SG. We then compute the bottom of the spectrum of the associated Laplacian using the finite element method on polyhedral approximations of our surface, and speculate on the behavior of the entire spectrum.


Fractals ◽  
2019 ◽  
Vol 27 (02) ◽  
pp. 1950016 ◽  
Author(s):  
JIN CHEN ◽  
LONG HE ◽  
QIN WANG

The eccentric distance sum is concerned with complex networks. To obtain the asymptotic formula of eccentric distance sum on growing Sierpiński networks, we study some nonlinear integral in terms of self-similar measure on the Sierpiński gasket and use the self-similarity of distance and measure to obtain the exact value of this integral.


Sign in / Sign up

Export Citation Format

Share Document