Relationship of Upper Box Dimension Between Continuous Fractal Functions and Their Riemann-Liouville Fractional Integral

Fractals ◽  
2021 ◽  
Author(s):  
Xiao Wei
Fractals ◽  
2019 ◽  
Vol 27 (05) ◽  
pp. 1950084 ◽  
Author(s):  
YONG-SHUN LIANG

In this paper, fractal dimensions of fractional calculus of continuous functions defined on [Formula: see text] have been explored. Continuous functions with Box dimension one have been divided into five categories. They are continuous functions with bounded variation, continuous functions with at most finite unbounded variation points, one-dimensional continuous functions with infinite but countable unbounded variation points, one-dimensional continuous functions with uncountable but zero measure unbounded variation points and one-dimensional continuous functions with uncountable and non-zero measure unbounded variation points. Box dimension of Riemann–Liouville fractional integral of any one-dimensional continuous functions has been proved to be with Box dimension one. Continuous functions on [Formula: see text] are divided as local fractal functions and fractal functions. According to local structure and fractal dimensions, fractal functions are composed of regular fractal functions, irregular fractal functions and singular fractal functions. Based on previous work, upper Box dimension of any continuous functions has been proved to be no less than upper Box dimension of their Riemann–Liouville fractional integral. Fractal dimensions of Riemann–Liouville fractional derivative of certain continuous functions have been investigated elementary.


Fractals ◽  
2020 ◽  
Vol 28 (01) ◽  
pp. 2050005
Author(s):  
JIA YAO ◽  
YING CHEN ◽  
JUNQIAO LI ◽  
BIN WANG

In this paper, we make research on Katugampola and Hadamard fractional integral of one-dimensional continuous functions on [Formula: see text]. We proved that Katugampola fractional integral of bounded and continuous function still is bounded and continuous. Box dimension of any positive order Hadamard fractional integral of one-dimensional continuous functions is one.


Fractals ◽  
2020 ◽  
Vol 28 (07) ◽  
pp. 2050128
Author(s):  
BIN WANG ◽  
WENLONG JI ◽  
LEGUI ZHANG ◽  
XUAN LI

In this paper, we mainly research on Hadamard fractional integral of Besicovitch function. A series of propositions of Hadamard fractional integral of [Formula: see text] have been proved first. Then, we give some fractal dimensions of Hadamard fractional integral of Besicovitch function including Box dimension, [Formula: see text]-dimension and Packing dimension. Finally, relationship between the order of Hadamard fractional integral and fractal dimensions of Besicovitch function has also been given.


2021 ◽  
Vol 5 (4) ◽  
pp. 185
Author(s):  
Kshitij Kumar Pandey ◽  
Puthan Veedu Viswanathan

There has been a considerable evolution of the theory of fractal interpolation function (FIF) over the last three decades. Recently, we introduced a multivariate analogue of a special class of FIFs, which is referred to as α-fractal functions, from the viewpoint of approximation theory. In the current note, we continue our study on multivariate α-fractal functions, but in the context of a few complete function spaces. For a class of fractal functions defined on a hyperrectangle Ω in the Euclidean space Rn, we derive conditions on the defining parameters so that the fractal functions are elements of some standard function spaces such as the Lebesgue spaces Lp(Ω), Sobolev spaces Wm,p(Ω), and Hölder spaces Cm,σ(Ω), which are Banach spaces. As a simple consequence, for some special choices of the parameters, we provide bounds for the Hausdorff dimension of the graph of the corresponding multivariate α-fractal function. We shall also hint at an associated notion of fractal operator that maps each multivariate function in one of these function spaces to its fractal counterpart. The latter part of this note establishes that the Riemann–Liouville fractional integral of a continuous multivariate α-fractal function is a fractal function of similar kind.


Fractals ◽  
2020 ◽  
Vol 28 (07) ◽  
pp. 2050139
Author(s):  
XUEFEI Wang ◽  
CHUNXIA ZHAO

In this paper, we mainly discuss continuous functions with certain fractal dimensions on [Formula: see text]. We find space of continuous functions with certain Box dimension is not closed. Furthermore, Box dimension of linear combination of two continuous functions with the same Box dimension maybe does not exist. Definitions of fractal functions and local fractal functions have been given. Linear combination of a fractal function and a local fractal function with the same Box dimension must still be the original Box dimension with nontrivial coefficients.


2014 ◽  
Vol 8 ◽  
pp. 7175-7181
Author(s):  
Konstantin Igudesman ◽  
Roman Lavrenov ◽  
Victor Klassen

Fractals ◽  
2020 ◽  
Vol 28 (02) ◽  
pp. 2050030 ◽  
Author(s):  
YONG-SHUN LIANG

In this work, we consider fractal dimension such as Box dimension, of Weyl fractional integral of certain continuous functions. Upper Box dimension of Weyl fractional integral of continuous functions satisfying [Formula: see text]-order Hölder condition of positive order [Formula: see text] is no more than both [Formula: see text] and [Formula: see text]. Furthermore, it is no more than [Formula: see text] which means strictly less than [Formula: see text]. Meanwhile, [Formula: see text], Box dimension of Weyl fractional integral of continuous functions satisfying [Formula: see text]-order Hölder condition must be one.


Sign in / Sign up

Export Citation Format

Share Document